ХИМИЯ

УДК 547.592.1.543.51

СИНТЕЗ НОВЫХ ГУАНИДИНОВЫХ ОРГАНИЧЕСКИХ СОЕДИНЕНИЙ НА ОСНОВЕ ЭФИРОВ α -ХЛОР АЛКОКСИМЕТИЛА, 2,6-ДИХЛОР-5-ОКСОГЕКСЕНА-2, 1-МЕТИЛ- И 4-ВИНИЛ-ЦИКЛОГЕКСЕНОВ И ИХ ИССЛЕДОВАНИЕ 1

© 2008 Г.И. Байрамов²

На основе α-хлор алкоксиметила, 2,6-дихлор-5-оксогексена-2, 1-метил и 4-винилциклогексенов синтезированы 12 новых дифенилгуанидиновых органических соединений I-XII, проведено их исследование в качестве ингибиторов защиты от коррозии металлов. Эти соединения являются высокоэффективными ингибиторами в кислых средах. Они позволяют повысить степень защиты стали от коррозии в пределах 98,5-100%.

Ключевые слова и фразы: *синтез, органическое соединение, гуанид,* эфир, дифенилгуанидиновое соединение.

Ранее нами проведен [1] синтез эфиров α-хлор алкоксиметилов и 2,6-дихлор-5-оксогексена-2, а также алкоксиметилгалогенирование замещенных (1-метил и 4-винил) циклогексенов. На основе полученных соединений с дифенилгуанидином были проведены реакции и синтезированы 12 новых дифенилгуанидиновых соединений. Синтез проведен в шесть этапов по следующим схемам.

На первом этапе были получены следующие соединения α -хлор эфиров по известным методам [1–4]:

¹Представлена доктором химических наук профессором П.П. Пурыгиным.

²Байрамов Гияс Ильяс оглы, кафедра экологической химии Бакинского государственного университета, 370145, Азербайджан, Баку, ул. З. Халилова, 23.

На втором этапе было проведено алкоксиметилгалогирование 1-метилциклогексена по известному методу [1]:

$$CH_3$$
 + ROCH₂Cl $kat, t, {}^0C$ CH_3 CH_2OR

На третьем этапе было проведено алкоксиметилгалогирование 1-винилциклогексена по известному методу [1]:

На четвертом этапе были синтезированы следующие соединения по известному методу [4]:

$$C_6H_5-NH$$
 $C=NH + ROCH_2CI \xrightarrow{t, {}^0C} C_6H_5-NH$
 $C=NH + HCI$
 C_6H_5-NH
 $C=NH + HCI$
 C_6H_5-NH
 CH_2OR

где, $R = -C_8 H_{17}$ (группа соед. I); $R = -C_{10} H_{21}$ (группа соед. II); $R = -C_{12} H_{25}$ (группа соед. III); $R = -C_{12} H_{25}$ (группа соед. IV).

На пятом этапе были синтезированы следующие соединения:

$$C_6H_5-NH$$
 $C=NH$
 C_6H_5-NH
 C_6H_5-

где, $R = -C_8H_{17}$ (группа соед. V); $R = -C_{10}H_{21}$ (группа соед. VI); $R = -C_{12}H_{25}$ (группа соед. VII); $R = -CH_2CH = CCICH_3$ (группа соед. VIII).

На шестом этапе были синтезированы следующие соединения:

$$C_{6}H_{5}-NH$$

$$C=NH$$

$$C_{6}H_{5}-NH$$

$$C_{7}H_{7}-NH$$

$$C=NH$$

$$C_{7}H_{7}-NH$$

$$C_{7}H_{7}-NH$$

$$C_{8}H_{7}-NH$$

$$C$$

где, $R = -C_8H_{17}$ (группа соед. IX); $R = -C_{10}H_{21}$ (группа соед. X); $R = -C_{12}H_{25}$ (группа соед. XI); $R = -CH_2CH = CCICH_3$ (группа соед. XII).

Физико-химические константы и данные элементного анализа соединений I-XII приведены в таблице 1. Состав и структуры синтезированных соединений установлены на основании данных элементного анализа и ИК-, ПМР- и масс-спектров.

В масс-спектре соединений I-XII их молекулярные ионы имеют массы соответственно 353 (соед. I); 381 (соед. II); 409 (соед. III); 329,5 (соед. IV); 449 (соед. V); 477 (соед. VI); 505 (соед. VII); 425,5 (соед. VIII); 461 (соед. IX); 489 (соед. X); 517 (соед. XI); 437,5 (соед. XII).

В ИК-спектре этих соединений проявляются полосы 910, 990; 1056-1080; 1380, 1460; 1647, 2800, 2850, 2800-3000; 3080, 3250; 3325, 3340, 3400, 3450 см $^{-1}$ относящиеся соответственно к винильной, метиленовой, метильной, к простой эфирной, NH группам.

В спектре соединений IV, VIII и XII центральный -C = C, атом хлора, C - Cl, C - N связи проявляется интенсивной полосой соответственно 1680, 3030; 567, 624; 685, 690, 700; 567, 624; 1280, 1350 см $^{-1}$.

В спектре ПМР этих соединений I-XII имеются сигналы метиленовых групп кольца (широкий, интенсивный мультиплет в области 1,41-1,82 м.д.), метильной группы (триплет 0,8-1,21 м.д.), группы $-CH_2O-($ дублет 2,05 м.д.), а также винильной группы (4,2-4,5 м.д. мультиплет). В интервале 6-8 м.д. два дублета отвечают сигналам двух неэквивалентных м-протонов бензольного кольца соединений I-XII и не изменение своего положения при сильном разбавлении говорит о наличии прочной водородной связи -C = N- группы, что подтверждает присоединение -C = NH группы с $-NH-C_6H_5$ и $-N-C_6H_5$ группой. В спектрах ПМР соединений I-IV синглеты при 3,94-4,40 м.д. и 4,75-5,55 м.д. соответствуют протонам метиленовых групп фрагментов $> N-CH_2$ и $> N-CH_2O-$.

В лабораторных условиях синтезированные соединения I-XII исследованы в качестве ингибиторов для защиты от коррозии оборудования как в кислых средах сероводородсодержащих, так и не содержащих газоконденсатных скважинах, а также в нефтеперерабатывающей промышленности.

В настоящее время в качестве ингибитора коррозии стали известны различные азотсодержащие соединения. Например, циклогексиламин испытан

как ингибитор коррозии стали в двухфазной системе 0,1 N NaCl+ топливо TC-1) и показывает степень защиты 71% [6].

Дифенилгуанидин солянокислый используется как ингибитор коррозии черных металлов в нефтеперерабатывающей промышленности. При использовании дифенилгуанидина в концентрации 1% (моль/л) коэффициент торможения коррозии меняется в пределах 4-18% [7].

Однако эти ингибиторы обладают сравнительно низким эффектом защиты.

Установление эффективности новых синтезированных дифенил-гуанидиновых соединений I-XII в качестве ингибитора коррозии стали проведено в четырехгорлых колбах в динамических условиях при постоянном перемешивании (600 об/мин) коррозионной двухфазной смеси при 40-45 °C. Образцы из стали 3 с общей поверхностью 2 см² перед испытанием шлифуются, обезжириваются соответствующим образом. Расход ингибитора рассчитывается на 1 л коррозионной среды. Время испытания 3 ч. Результаты исследования приведены в таблице 2.

В качестве эталона принят дифенилгуанидин, как наиболее близкий к исследованным соединениям из известных в литературе ингибиторов [4-5].

Как видно из результатов испытаний приведенных в таблице 2 эффективность соединений I-XII как в сероводородсодержащих, так и не содержащих газоконденсатных скважинах по сравнению с дифенилгуанидином выше, а именно при концентрации 200 мг/л соединений в среде без сероводорода показывает эффективность 100%, а в сероводородсодержащей среде в пределах 98,5-100% для газоконденсатных и 99,5-100% для нефтяных скважин, а при концентрации 100 мг/л соединений IX-XII эффективность составляет 99,96-100%.

В аналогичных условиях эффективность дифенилгуанидина при концентрации $100~{\rm Mr/n}$ составляет 81,13-92,94%, а при концентрации $200~{\rm Mr/n}$ соответственно эффективность составляет 90,18-94,1%.

Экспериментальная часть

Синтез эфиров α -хлор-октоксиметила, α -хлор-децоксиметила, α -хлор-ундецоксиметила

Синтез был проведен по известным методам [1-3]. Состав и структуры этих соединений были определены данными элементного анализа и ИК, ПМР масс-спектроскопии.

Синтез эфира 2,6-дихлор-5-оксогексена-2. Это соединение синтезируется по схеме:

1,3-дихлорбутен-2 является отходом промышленности синтетического каучука. Получается он в качестве побочного продукта при синтезе хлорпрена и имеет следующие константы [4].

$$T_{\text{кип.}}$$
 127-129 °C / 756 мм. рт. ст.; $d_4^{20}=1,11828;$ $n_D^{20}=1,4724.$

Синтез 2-хлорбутен-2-ол-4

Синтез произведен согласно [4]:

$$2CH_3CCl = CHCH_2Cl + K_2CO_3 \xrightarrow{\ \ \ \ \ \ \ \ } 2CH_3CCl = CHCH_2OH + 2KCl.$$

Смесь 250 г (2 г-моль) 1,3-дихлорбутена-2 и 1000 г 20%-го карбоната калия перемешивают при 100°C в течение 15 ч. Органический слой отделяют, сушат над $CaCl_2$, вакуумной разгонкой выделяют 2-хлор-ол-4-бутен-2:

$$T_{\text{кип.}}$$
 89-90 °C / 50 мм. рт. ст.; $d_4^{20} = 1,1060; n_D^{20} = 1,4712.$

 ${
m T_{\rm кип.}}$ 89-90 °C / 50 мм. рт. ст.; $d_4^{20}=1,1060;$ $n_D^{20}=1,4712.$ Синтез 2,6-дихлор-5-оксогексена-2 осуществляется аналогично методу синтеза а-хлорэфиров [2]. Сухой поток НСІ пропускают через охлаждаемую ледяной водой смесь, составленную из эквимолекулярных количеств параформа и 2-хлор-4-ол бутена-2. Выход составляет 85%. Эфир этот имел следующие константы:

$$T_{\text{кип.}}$$
 83-850 °C / 10 мм. рт. ст; $d_4^{20} = 1,1944; n_D^{20} = 1,4725.$

Синтез N,N'-дифенил-N'-октоксиметил-гуанидина (соед. I)

Смесь, состоящую из 148 г (0,7 г-моль) 1,3-дифенилгуанидина (меланилина), 34,5 г (0,5 г-моль) пиридина и 200 мл бензола, нагревают при перемешивании до 70°C до полного растворения дифенилгуанидина. Затем к смеси добавляют 62,475 г (0,35 г-моль) α-хлорметилоктилового эфира. Реакционную смесь перемешивают еще четыре часа при 70 °С, разлагают водой, органический слой сушат К₂CO₃, после отгонки растворителя бензола вакуумной разгонкой выделяют N, N'-дифенил-N'-октоксиметил-гуанидин (соед. 1).

Аналогично были синтезированы соед. II и III.

Синтез N,N'-дифенил-N'-2-хлор-5-оксогексен-2-гуанидина (соед. IV)

В колбу для синтеза помещают 63,43 г (0,3 г-моль) 1,3-дифенилгуанидина в растворе 150 мл этилового спирта, нагревают при перемешивании до 60°C до полного растворения дифенилгуанидина. Затем к смеси добавляют 23,4 г (0,15г-моль) 2,6-дихлор-5-оксогексенового-2 эфира. Перемешивание продолжают еще 6 часов при температуре 60°C. Затем в колбу добавляют 100 мл воды. Перемешивают, органический слой отделяют, сушат над CaCl₂. Остаток перегоняют на вакуумной установке с выделением соед. IV, который представляет собой яркую желтую вязкую жидкость с резким специфическим запахом.

Синтез 1-метил-1-N,N'-дифенилгуанидин-2-октоксиметилциклогексана (соед. V)

В колбу для синтеза помещают 42,28 г (0,2 г-моль) 1,3-дифенилгуанидина в растворе толуола (150 мл). На смесь нагретую до 85-88 °С, при перемешивании постепенно подают 26,66 г (0,1 г-моль) 1-метил-1-хлор-2-октоксиметилцикло-гексан. Реакционную смесь перемешивают 8 часов при температуре 100 °С, оставляют на ночь. Затем в колбу добавляют 200 мл воды. Перемешивают, органический слой отделяют, сушат над CaCl₂. Под вакуумом водоструйного насоса отгоняют толуол. Остаток перегоняют на вакуумной установке с выделением 1-метил-1-N, N'-дифенилгуанидин-2-октоксиметил-циклогексана соед. V, который представляет собой желтую вязкую жидкость с резким специфическим запахом.

Аналогично были синтезированы соед. VI и VII.

Синтез 1-метил-1-N,N'-дифенилгуанидин-2-(2-хлор-5-оксогексен-2) циклогексана (соед.VIII)

К смеси, состоящей из 42,28 г (0,2 г-моль) 1,3-дифенилгуанидина и 150 мл толуола, нагретой до 100 °C постепенно прибавляют 25,2 г (0,1 г-моль) 1-метил-1-хлор-2-(2-хлор-5-оксогексен-2) циклогексана. Перемешивание продолжают еще 8 часов при этой температуре.

Оставляют на ночь, прибавляют 100 мл 4% раствора NaOH, затем воду (100)мл), органический слой сушат CaCl₂. После отгонки толуола на вакуумной установке выделяют 1-метил-1-N, N'-дифенилгуанидин-2-(2-хлор-5-оксогексен-2) циклогексана (соед. VIII).

Синтез 1-винил-1-N,N'-дифенилгуанидин-2-(2-хлор-5-оксогексен-2) циклогексана (соед. IX)

Синтез проводится аналогично синтеза (соед. V) 1-метил-1-N, N' -дифенилгуанидин-2-октоксиметилциклогексана. Из 21,14 г (0,1 г-моль) 1,3-дифенилгуанидина и 14,3г (0,05 г-моль) 1-винил-3,4-(хлор, октоксиметил) циклогексана было получено соед. IX.

Аналогично были синтезированы соед.X и XI.

Синтез 1-винил-3,4 (N,N'-дифенилгуанидин, 2-хлор-5-оксогексен-2) циклогексана (соед. XII)

Синтез проводится аналогично синтезу 1-метил-1-N, N' -дифенилгу-анидин-2-(2-хлор-5-оксогексен-2) циклогексана (соед. VIII). Из 21,14 г (0,1 г-моль) 1,3-дифенилгуанидина и 13,15 г (0,05 г-моль) 1-винил-3,4-(хлор, 2-хлор-5-оксогексен-2) циклогексана получено соед. XII.

Таблица 1

Физико-химические константы и элементный анализ синтезированных соединений I-XII

_	Г			_	- 2	9	· · ·		
	0	Z	18	11,91	11,02	10,26	12,7:	9,35	8,81
	ено 0	C	17	ı	1	1	10.77	ı	ı
3	Вычислено %	Н	16	8,78	9,19	9,53	6,07	9,85	9,85
анали	B	C	15	74,79	75,59	76,28	65,55	9,56 77,51 9,85	77,98 9,85
Элементный анализ		z	14	12,12 74,79 8,78	11,13 75,59 9,19	10,37 76,28 9,53	12,97 65,55 6,07 10.77 12,75	9,56	9,01
Элем	Найдено, %	CI	13	ı	ı	ı	11,82	1	1
	Найде	Н	12	8,91	9,39	9,74	6,89	9,78	86,6
		С	11	74,58	75,76	76,41	65,78	77,79	78,16
,	Мол.	2	10	353	381	409	329.5	449	477
ţ	Брутто	формула	6	C ₂₂ H ₃₁ ON ₃	C ₂₄ H ₃₅ ON ₃	C ₂₆ H ₃₉ ON ₃	C ₁₈ H ₂₀ OCI N ₃ 329.5 65,78	C ₂₉ H ₄₃ ON ₃	C ₃₁ H ₄₇ ON ₃
	$MK_D, \%$	Найдено Вычислено	8	109,89	119,18	128,48	95,64	140,36	149,65
13.4	M	Найдено	7	110,02	119,20	128,56	95,93	140,59	149,93
	n_{D}^{20}	1	9	0,8586 1,4478		1,4528	1,0304 1,5114	0,8626 1,4525	0,8647 1,4557
	d_4^{20}		5	0,8586	0,8592 1,4502	0,8599 1,4528	1,0304	0,8626	0,8647
;	T. Kuii 0 C (am et et)	C (MM.P.1.C1.)	4	129-132	138-140 (1)	147-149	168-170 (1)	143-145	169-171
	Выход, %	0 \	3	83,5	84,6	84,2	84,5	82,5	84,4
	Соепинение		2	C ₆ H ₅ -NH C=NH C ₆ H ₅ -N CH ₂ OC ₈ H ₁₇	C ₆ H ₅ -NH C=NH C ₆ H ₅ -N CH ₂ OC ₁₀ H ₂₁	C_6H_5-NH C_6H_5-N $CH_2OC_{12}H_{25}$	C ₆ H ₅ -NH C ₆ H ₅ -N C ₆ H ₂ OCH ₂ -CH=CCICH ₃	C ₆ H ₅ -NH C ₆ H ₅ -N CH ₃ -N	$C_{6}H_{5}-NH$ $C_{6}H_{5}-NH$ $C_{6}H_{5}-N$ $C=NH$ $C_{6}H_{5}-N$ $C=NH$ $C_{6}H_{5}-N$
;	Ne Poer	Tana	_	I	П	Ш	VI	>	VI

Окончание таблицы 1

VIII CGMS-NH XI CGMS-NH CGMS-NH CGMS-NH CGMS-NH CGMS-NH CGMS-NH CGMS-NH XI CGMS-NH CGMS-NH CGMS-NH CGMS-NH CGMS-NH XI CGMS-NH		-	7		∞	2	10
CGHS-NH CGH	18	8,31	9,87	9,11	8,58	8,12	9,6
C ₆ H ₅ -NH C ₇ H	17	I	8,34	I	I	I	8,11
CGH5-NH CH	16	10,09		9,31	9,61	98'6	7,31
C ₆ H ₅ -NH C ₆ H	15	78,41		78,09	78,52	78,91	71,31
C ₆ H ₅ -NH C ₆ H	14	8,51	9,92	9,32	8,79	8,34	9,81
CGH5-NH CGH5-N	13	1	8,52	1	1	1	8.32
C ₆ H ₅ -NH C ₆ H ₆ -NH C ₆ H	12	10,31	7,71	9,51	9,83	76'6	7,51
C ₆ H ₅ -NH C ₆ H ₆ -NH C ₆ H	11	78,63	70,71	78,23	78,71	79,02	71,52
CCICH ₃ CH ₃ NH C ₆ H ₅ - NH C	10	\$05	425,5	461	489	517	437,5
CCICH ₃ CH ₃ NH C ₆ H ₅ - NH C	6	$C_{33}H_{51}ON_3$	Z ₂₅ H ₃₂ OCIN ₃	C ₃₀ H ₄₃ ON ₃	C ₃₂ H ₄₇ ON ₃	C ₃₄ H ₅₁ ON ₃	C26H32OCIN3
CCICH ₃ CH ₃ NH C ₆ H ₅ - NH C	8	158,95	126,1	144,53	153,82	163,11	130,280
CCICH ₃ CH ₃ NH C ₆ H ₅ - NH C	7	159,02	126,27	144,71	153,97	163,21	130,45
CCICH ₃ CH ₃ NH C ₆ H ₅ - NH C	9	1,4589	1,5315	1,4550	1,4569	1,4588	1,5356
CCICH ₃ CH ₃ NH C ₆ H ₅ - NH C	5	0,8676	1,0432	0,8643	0,8648	0,8654	1,0450
CGH5-NH CHH CHH CHH CHH CHH CHH CHH CHH CHH C	4		i e	(1)	i		204-205
C ₆ H ₅ -NH C ₆ H	3	84.7	86.2	85.7	84.9	85.2	
	2			HN I		THE CONTRACTOR OF THE CONTRACT	S NH
	1	IIA	VIII	IX	×	IX	IIX

Таблица 2

Результаты испытания синтезированных соединений I – XII в качестве ингибитора

	Интерентрация Концентрация	ингибитора,	МГ/Л		1 2	Без ингибитора	5	10	Дифенил-		100	200	5	10	25	С0ед.1	100	200	\$	10	25	C0eA II 50	100	0 0
0,04%	Ee3 H ₂ S	Скорость	коррозии,	Γ/M ² ·ч	3	2,65	1,65	1,41	1,06	0,85	0,50	0,26	1,25	0,85	0,45	0,21	60,0	0,02	1,18	0,76	0,37	0,15	90,0	1000
CH3COOF	^{2}S	Степень	защиты,	%	4	ı	37,74	46,79	0,09	67,92	81,13	90,18	52,83	67,92	83,02	92,08	09,96	99,25	55,47	71,32	96,04	94,34	97,74	.,
0,04% CH ₃ COOH + OKTAH (1:1)	$C H_2 S (1000 Mr/\pi)$	Скорость	коррозии,	Γ/M^2 ·4	5	6,3	4,35	3,65	3,01	2,26	1,54	0,33	3,05	2,08	1,81	0,75	0,46	0,15	2,86	1,92	0,84	0,49	0,28	0.11
(1:1)	000 мг/л)	Степень	защиты,	%	9	ı	30,95	42,06	52,22	64,13	82,69	94,76	51,59	86,99	71,27	88,09	92,69	98,02	54,60	69,52	86,67	92,22	95,56	1000
	Ee3	Скорость	коррозии,	Γ/M^2 ·Ч	7	3,36	1,98	1,80	1,05	0,94	0,72	0,65	1,75	1,38	0,76	0,41	0,24	0,14	1,67	1,29	0,54	0,29	0,17	000
3% NaCl + HEФТЬ (7:1)	Ee3 H ₂ S	Степень	защиты,	%	8	-	41,98	46,43	68,75	72,02	78,57	59'08	47,92	58,93	77,38	87,80	92,86	95,83	50,30	61,61	83,93	91,37	94,94	0.00
3ФТЬ (7:1)	C H ₂ S (500 MI/ π)	Скорость	коррозии,	Γ/M^2 ·4	6	3,4	2,61	2,05	1,82	6,0	0,24	0,2	1,84	1,42	68'0	0,64	0,11	90,0	1,61	86,0	0,71	0,52	0,26	000
	00 MF/II)	Степень	защиты,	%	10	ı	23,24	39,71	46,47	73,52	92,94	94,12	45,88	58,24	73,82	81,18	96,76	98,23	58,24	71,18	79,12	84,71	98,24	0,00

Продолжение таблицы 2

1	2	3	4	5	6	7	8	6	10
	5	1,10	58,49	2,71	86,98	1,54	54,17	1,42	61,18
	10	0,64	75,85	1,79	71,59	1,15	65,77	0,82	75,88
СоепШ	25	0,21	92,80	99,0	89,21	0,38	88,69	0,59	82,65
COCH III	50	90,0	97,74	0,32	94,92	0,18	94,64	0,39	88,53
	100	0,02	99,25	0,17	97,3	0,075	92,76	0,04	98,82
	200	0,008	02,66	0,08	98,73	0,02	99,40	0,025	99,26
	5	0,85	67,92	2,54	59,68	1,32	60,71	1,18	65,23
	10	0,51	80,75	1,61	74,44	1,01	69,94	0,65	88,08
Соот IV	25	0,11	95,85	0,51	91,90	0,22	93,45	0,47	86,18
V1 M200	50	0,041	98,45	0,24	61,96	60,0	97,32	0,25	92,65
	100	0,012	99,45	0,05	99,21	0,061	98,18	0,024	92,29
	200	-	100	0,035	99,60	0,008	92,76	0,018	99,47
	5	0,63	76,23	2,39	62,06	1,19	64,58	0,95	72,06
	10	0,38	85,66	1,48	76,51	0,85	74,70	69,0	79,71
Соеп V	25	0,03	98,87	0,42	93,33	0,14	95,83	0,48	85,88
٠ ۲	50	0,0025	16,66	0,17	97,30	0,075	92,76	0,26	92,35
	100	ı	100	0,03	99,52	0,030	99,10	0,012	59,66
	200	-	-	-	100	0,004	88'66	0,009	99,74
	5	058	78,11	2,21	64,92	1,12	66,67	0,86	74,71
	10	0,31	88,30	1,32	79,05	0,73	78,27	0,50	85,29
Coan VI	25	0,028	88,34	0,29	95,40	90,0	98,21	0,39	88,53
C054 V1	50	0,0017	99,94	0,09	98,57	0,002	99,94	0,17	95,0
•	100	1	100	0,012	99,81	1	100	0,009	99,74
	200	-	-	-	100	-	-	0,002	99,94
	5	0,48	81,85	2,13	66,20	1,105	67,41	0,79	76,76
	10	0,23	91,32	1,25	80,16	0,34	89,88	0,47	86,18
Соет VIII	25	0,01	99,65	0,19	96,98	0,02	99,40	0,25	92,65
11 v H200	50	0,001	96,66	0,04	99,36	0,001	99,97	60,0	9735,
	100	ı	100	0,016	96,90	1	100	0,006	99,82
	200	-	1	1	100	1	_	0,001	99,97

Окончание таблицы 2

	5	0,32	87,92	2,01	68,09	0,81	75,89	89,0	0,08
	10	0,11	95,85	1,08	82,86	0,62	81,55	0,29	91,47
Coen VIII	25	0,01	69,65	60,0	98,57	90,0	98,21	80'0	59,76
C00A: VIII	50	0,005	99,81	0,025	09,66	0,002	99,94	0,02	99,41
	100	0,001	96,66	0,008	78,66	1	100	0,003	16,66
	200	ı	100	0,001	86,66	1	ı	-	100
	5	0,22	91,70	1,83	70,95	69,0	79,46	0,54	84,11
	10	90,0	97,74	0,91	85,56	0,51	84,82	0,18	I
Coen IV	25	0,014	99,47	0,05	99,21	0,04	8,86	0,05	94,71
COCH. IV	50	0,004	99,85	0,018	99,71	0,001	76,96	0,01	98,53
	100	0,001	96,66	0,004	99,94	-	100	=	100
	200	ı	100	-	100	-	-	-	-
	5	0,16	93,96	1,76	72,06	850	82,74	0,43	87,35
	10	0,04	98,49	0,83	86,83	0,43	87,20	0,11	96,76
Coor	25	600,0	99,66	0,029	99,53	0,03	99,11	0,008	92,76
COCA: A	50	0,001	96,66	0,004	99,94	0,0004	66'66	-	100
	100	1	100	-	100	-	100	-	
	200	1	ı	ı	-	ı	-	-	-
	5	60,0	09,96	1,63	74,13	0,41	87,80	0,29	91,47
	10	0,03	78,86	89,0	89,21	0,28	61,67	6,03	99,12
IA EGO	25	900'0	72,66	0,018	99,71	0,01	02,66	0,005	58'66
соед. Ат	50	0,0004	86,98	0,001	86,66	005	66'66	ı	100
	100	1	100	-	100	-	100	-	
	200	1	ı	ı	-	-	1	-	ı
	5	0,01	99,62	1,41	77,62	0,22	93,45	0,16	95,29
	10	900,0	72,66	0,43	93,17	80,0	97,62	0,01	12,66
V TOO	25	1	100	0,003	56,66	0,001	26'66	0,002	46,66
Соед. Ап	50	ı	1	-	100	-	100	-	100
	100	1	ı	_	-	-	ı	-	ı
	200	1	1	ı	٦	-	-	ī	1

Литература

- [1] Байрамов, Г.И. Алкоксиметилгалогенирование замещенных циклогексенов, синтез и применение производных продуктов / Г.И. Байрамов. Дисс. . . . кан. хим. наук. Баку, 1988. С. 90.
- [2] Мамедов, Ш.А. Простые галоидэфиры и их биологическая активность / Ш.А. Мамедов. Баку: Азернешр, 1966. С. 164.
- [3] Поконова, Ю.В. Химия и технология галогенэфиров / Ю.В. Поконова. Ленинград: Изд-во ЛГУ, 1982. С. 250.
- [4] Исагулиянц, В.И 1,3-дихлорбутен-2 и новые препараты на его основе / В.И. Исагулиянц и [др.] // Успехи химии. 1964. Т. ХХХІІІ. Вып. 1. С. 55.
- [5] Шыхмамедбекова, А.З. N,N'-дифенил-N'-октоксиметил-гуанидин в качестве ингибитора коррозии стали в двухфазной системе / А.З. Шыхмамедбекова, И.Ф. Мамедярова, Г.И. Байрамов. Авторское свидетельство СССР. № 1031141, С 07, С129/12, С 23 F 11/14. 1983 г.
- [6] Розенфельд, И.Л. Ингибиторы коррозии / И.Л. Розенфельд. М.: Химия, 1977. С. 308.
- [7] Алцыбеева, А.А. Ингибиторы коррозии металлов / А.А. Алцыбеева, С.З Левин. М.: Химия, 1968. С. 95.

Поступила в редакцию 13/XI/2008; в окончательном варианте — 13/XI/2008.

A SYNTHESIS OF NEW GUANIDINE ORGANIC COMPOUNDS ON BASIS OF ETHERS α-CHLORINE ALCOXIMETHYL, 2,6-DICHLORINE-5-OXOHEXENE-2, 1-METHYL AND 4-VINYLCYCLOHEXENES AND IT'S ANALYSIS

© 2008 G.I. Bairamov 3

Based on the α -chlorine alcoximethyl, 2,6-dichlorine-5-oxohexene-2, 1-methyl and 4-vinylcyclohexenes new 12 diphenylguanidine organic compounds I-XII are synthesized. It's investigation as corrosion prevention inhibitors of metals are analyzed. This compounds are high-performance inhibitors in acid medium. They permits to increase protection degree of steel from corrosion within the limits 98,5-100%.

Keywords and phrases: synthesis, organic compound, guanide, ether, diphenylguanidine compound.

Paper received 13/XI/2008. Paper accepted 13/XI/2008.

³Bairamov Giyas Il'yasovich., Dept. of Ecological Chemistry, Baku State University, Baku, 370145, Azerbaijan.