УДК 512.541+512.553

О СООТНОШЕНИЯХ ДИСТРИБУТИВНОСТИ ДЛЯ Т-РАДИКАЛОВ АБЕЛЕВЫХ ГРУПП 1

© 2008 Е.А. Тимошенко²

Работа посвящена радикалам, которые задаются при помощи тензорного произведения абелевых групп. Рассмотрен вопрос о том, какие соотношения дистрибутивности справедливы для таких радикалов.

Ключевые слова: радикал, тензорное произведение, Абелева группа, дистрибутивность.

Предварительные сведения

Данная статья продолжает исследование Т-радикалов, которое было начато в работе [1]. Т-радикалы можно охарактеризовать, в частности, как те радикалы, чьи радикальные классы замкнуты относительно взятия сервантных подгрупп. В качестве удобного инструмента используются также Е-радикалы. Все группы предполагаются абелевыми. Используются следующие обозначения:

\bigoplus	прямая сумма
\subset (\subseteq)	строгое (нестрогое) включение
P	множество всех простых чисел
\mathbf{Z}	группа целых чисел
$\mathbf{Z}(p)$	циклическая группа порядка p
$\mathbf{Z}(p^{\infty})$	квазициклическая <i>р</i> -группа
Q	группа рациональных чисел
\mathbf{Q}_p	группа рациональных чисел, знаменатели
	которых взаимно просты с p
$\mathbf{Q}^{(p)}$	группа рациональных чисел, знаменателями
	которых являются степени числа p

 $^{^{1}}$ Представлена доктором физико-математических наук, профессором А.Н. Пановым. 2 Тимошенко Егор Александрович (tea471@mail.tsu.ru), кафедра общей математики

Томского государственного университета, 634050, Россия, г. Томск, пр. Ленина, 36.

 \mathbf{Q}_p^* кольцо целых p-адических чисел t(A) периодическая часть группы A $A\otimes B$ тензорное произведение групп A и B Группа гомоморфизмов из группы A в группу B.

Напомним некоторые факты из теории радикалов [2,3]. Пусть каждой группе A сопоставлена некоторая ее подгруппа $\rho(A)$. Скажем, что в категории абелевых групп задан идемпотентный радикал ρ , если для любого $\phi \in \text{Hom}(A,B)$ имеет место включение $\phi(\rho(A)) \subseteq \rho(B)$ и для любой группы A выполнены равенства

$$\rho(\rho(A)) = \rho(A),$$

$$\rho(A/\rho(A)) = 0.$$

Пусть ρ — идемпотентный радикал (далее слово "идемпотентный" зачастую будет опускаться). Назовем ρ -радикальным класс всех групп A, удовлетворяющих условию $\rho(A)=A$. Двойственным образом равенство $\rho(A)=0$ определяет класс, называемый ρ -полупростым. Заметим, что идемпотентный радикал ρ однозначно определяется как своим полупростым, так и своим радикальным классом (будем обозначать эти два класса P_{ρ} и R_{ρ} соответственно). Всякий радикальный класс замкнут относительно взятия расширений, прямых сумм и гомоморфных образов; всякий полупростой — относительно взятия расширений, прямых произведений и подгрупп.

Идемпотентные радикалы можно частично упорядочить, полагая $\rho \leqslant \sigma$ в том и только в том случае, когда $\rho(A) \subseteq \sigma(A)$ для любой группы A. Тогда большему радикалу будет соответствовать больший радикальный и меньший полупростой класс. Согласованные с введенным частичным порядком операции пересечения и объединения задаются равенствами

$$(\bigwedge_{i\in I}\rho_i)(A)=\sum\{B\subseteq A\mid \rho_i(B)=B$$
 для любого $i\in I\},$ $(\bigvee_{i\in I}\rho_i)(A)=\bigcap\{B\subseteq A\mid \rho_i(A/B)=0$ для любого $i\in I\}.$

Относительно данных операций совокупность всех радикалов составляет полную большую решетку $I\mathcal{R}$ с нулем и единицей (эта решетка отличается от обычной тем, что рассматриваемая совокупность не образует множество [4]).

Напомним теперь основные понятия из [1]. Пусть F есть некоторая абелева группа. Через $W_F(A)$ будет обозначаться сумма всех подгрупп B группы A, для которых выполнено $B \otimes F = 0$. Для абелевой группы V через $H_V(A)$ обозначается пересечение всех подгрупп B группы A таких, что $\operatorname{Hom}(V,A/B)=0$.

Определенные таким образом функторы W_F и H_V суть радикалы. Далее они называются соответственно $\mathsf{T}(F)$ -радикалом и $\mathsf{E}(V)$ -радикалом. Заметим, что для W_F радикальным будет класс всех групп A таких, что $A\otimes F=0$. Полупростым классом радикала H_V является класс $\mathcal{E}(V)$ всех абелевых групп A, для которых выполнено $\mathsf{Hom}(V,A)=0$. Кроме того, H_V — наименьший из всех радикалов ρ таких, что $V\in R_\rho$.

В [1] отмечался также следующий факт: если $\{F_i\}_{i\in I}$ есть семейство групп, то пересечение всех $\mathsf{T}(F_i)$ -радикалов и объединение всех $\mathsf{E}(F_i)$ -радикалов совпадают соответственно с W_F и H_F , где $F=\bigoplus_{i\in I}F_i$.

Т(F)-радикалы и дистрибутивность

Воспроизведем полученное в [1] описание частично упорядоченного множества \mathcal{L} всех $\mathrm{T}(F)$ -радикалов. Рассмотрим решетку $M=\{l,m,n,\lambda,\mu,\nu\}$ с отношением порядка $n\leqslant m\leqslant l\leqslant \mu\leqslant \nu,\ m\leqslant \lambda\leqslant \mu$ (элементы l и λ считаем несравнимыми). Всякому радикалу W_F ставится в соответствие функция $\psi^F\colon \mathbf{P}\to M$, задаваемая следующим образом: если группа F непериодическая, то

$$\psi^F(p) = \left\{ \begin{array}{ll} l, & \text{если группа } F \text{ является } p\text{-делимой;} \\ m, & \text{если группа } F \text{ не является } p\text{-делимой,} \\ & \text{а факторгруппа } F/t(F) \text{ является;} \\ n, & \text{если факторгруппа } F/t(F) \text{ не является } p\text{-делимой.} \end{array} \right.$$

Если же группа F периодическая, то

$$\psi^F(p) = \left\{ \begin{array}{ll} \lambda, & \text{если p-компонента группы F не является делимой;} \\ \mu, & \text{если p-компонента группы F делима и отлична от 0;} \\ \nu, & \text{если F имеет нулевую p-компоненту.} \end{array} \right.$$

Сопоставляя функцию ψ^F всякому радикалу W_F , мы устанавливаем взаимно однозначное соответствие между \mathcal{L} и подмножеством M' множества M^P . Заметим, что данное подмножество состоит из последовательностей вида $\alpha = (\alpha_2, \alpha_3, \alpha_5, ..., \alpha_p, ...)$, все члены которых одновременно входят в какоето одно из множеств $\{l, m, n\}$ или $\{\lambda, \mu, \nu\}$. Построенное соответствие задает изоморфизм частично упорядоченных множеств (считаем, что $\alpha \leqslant \alpha'$ тогда и только тогда, когда $\alpha_p \leqslant \alpha_p'$ для всех простых чисел p). Отсюда нетрудно вывести, что \mathcal{L} —полная дистрибутивная решетка.

Ясно, что в силу конечности множества M в решетке $\mathcal L$ справедливы также и бесконечные законы дистрибутивности. Что касается большой решетки $I\mathcal R$, то, как показано в конце параграфа, она не является не только дистрибутивной, но и модулярной.

Цель данной работы — ответить на вопрос: какие законы дистрибутивности останутся верны для T(F)-радикалов, если заменить в этих законах операции $\widetilde{\wedge}$ и $\widetilde{\vee}$ решетки \mathcal{L} операциями \wedge и \vee , определенными в $I\mathcal{R}$? В силу сказанного в конце первого параграфа $\widetilde{\wedge}$ действует на T(F)-радикалы так же, как и \wedge . Далее нам потребуется ряд подготовительных результатов.

Через \mathcal{L}_1 и \mathcal{L}_2 будем обозначать множества всех T(F)-радикалов таких, что абелева группа F является соответственно непериодической либо периодической. В [1] отмечалось, что множество \mathcal{L}_1 , в отличие от \mathcal{L}_2 , есть подрешетка большой решетки $I\mathcal{R}$. Радикал t, который сопоставляет всякой

группе ее периодическую часть, является наибольшим элементом в \mathcal{L}_1 ; если группа F периодическая, то имеем $W_F \nleq t$.

Введем некоторые необходимые для дальнейшего изложения дополнительные обозначения. Пусть $\mathcal{V}-$ непустой класс абелевых групп. Через $H_{\mathcal{V}}$ обозначим наименьший из всех радикалов ρ , которые обладают свойством $\mathcal{V}\subseteq R_{\rho}$ (такой радикал обязательно существует). Несложно показать, что $H_{\mathcal{V}}$ -полупростой класс совпадает с классом $\mathcal{E}(\mathcal{V})$ всех групп A, для которых $\operatorname{Hom}(V,A)=0$ при всех $V\in\mathcal{V}$. Можно также убедиться, что для любого множества групп $\mathcal{U}=\{U_i\}_{i\in I}$ радикал $H_{\mathcal{U}}$ будет объединением (точной верхней гранью) множества всех $\operatorname{E}(U_i)$ -радикалов. Говорят, что радикал $H_{\mathcal{V}}$ порожедается классом \mathcal{V} .

Ясно, что всякий радикал ρ может быть представлен в виде $H_{\mathcal{V}}$ (для этого достаточно положить $\mathcal{V} = R_{\rho}$). Далее, если \mathcal{V} и \mathcal{U} — два класса абелевых групп, то через $\mathcal{V} \otimes \mathcal{U}$ обозначим класс всех групп вида $V \otimes U$, где $V \in \mathcal{V}$, $U \in \mathcal{U}$. Если при этом $\mathcal{V} = \{V\}$, то пишем просто $V \otimes \mathcal{U}$.

Лемма 1: Для любых классов X, V, U из $H_X \leqslant H_V$ следует $H_{X\otimes U} \leqslant H_{V\otimes U}$.

Доказательство: Достаточно доказать включение $\mathcal{E}(\mathcal{V}\otimes\mathcal{U})\subseteq\mathcal{E}(\mathcal{X}\otimes\mathcal{U})$ для случая, когда $\mathcal{E}(\mathcal{V})\subseteq\mathcal{E}(\mathcal{X})$. В самом деле, если выполнено $A\in\mathcal{E}(\mathcal{V}\otimes\mathcal{U})$, то при любых $V\in\mathcal{V},\ U\in\mathcal{U}$ имеем

$$\operatorname{Hom}(V, \operatorname{Hom}(U, A)) \cong \operatorname{Hom}(V \otimes U, A) = 0.$$

Отсюда для всех $U \in \mathcal{U}$ получаем, что $\operatorname{Hom}(U, A) \in \mathcal{E}(V) \subseteq \mathcal{E}(X)$ и, значит,

$$\operatorname{Hom}(X \otimes U, A) \cong \operatorname{Hom}(X, \operatorname{Hom}(U, A)) = 0$$

для всякой группы $X \in \mathcal{X}$. Это доказывает, что $A \in \mathcal{E}(\mathcal{X} \otimes \mathcal{U})$. Таким образом, если $\mathcal{E}(\mathcal{V}) \subseteq \mathcal{E}(\mathcal{X})$, то $\mathcal{E}(\mathcal{V} \otimes \mathcal{U}) \subseteq \mathcal{E}(\mathcal{X} \otimes \mathcal{U})$. Доказательство завершено.

С учетом коммутативности тензорного произведения групп получаем

Следствие 2: Для любых классов X, Y, V, U из $H_X \leqslant H_V$ и $H_Y \leqslant H_U$ следует неравенство $H_{X\otimes Y} \leqslant H_{V\otimes U}$.

Следствие 3: Для любых классов X, Y, V, U из $H_X = H_V$ и $H_Y = H_U$ следует равенство $H_{X\otimes Y} = H_{V\otimes U}$.

Следствие 4: Для любых классов $\mathcal V$ и $\mathcal U$ выполнено $H_{\mathcal V\otimes\mathcal U}\leqslant H_{\mathcal U}.$

Доказательство: Радикал $H_{\mathbf{Z}}$ — наибольший элемент в $I\mathcal{R}$. Это означает, что $H_{\mathcal{V}}\leqslant H_{\mathbf{Z}}$ и $H_{\mathcal{V}\otimes\mathcal{U}}\leqslant H_{\mathbf{Z}\otimes\mathcal{U}}=H_{\mathcal{U}}$ (так как $\mathbf{Z}\otimes U\cong U$ для всякой группы U).

Напомним, что для любого радикала ρ подгруппа $\rho(A)$ сервантна в A [5].

Лемма 5: Если $\rho < \sigma$, то найдется группа без кручения, циклическая группа простого порядка или квазициклическая группа $B \neq 0$, для которой выполняются включения $B \in P_{\rho}$ и $B \in R_{\sigma}$.

Доказательство: Из включения $R_{\rho} \subset R_{\sigma}$ следует, что существует абелева группа A, для которой $A \notin R_{\rho}$ и $A \in R_{\sigma}$. Группа A принадлежит радикальному классу R тогда и только тогда, когда $t(A) \in R$ и $A/t(A) \in R$ [6];

таким образом, можно, не умаляя общности, считать A группой без кручения или периодической группой. В первом из этих случаев достаточно положить $B = A/\rho(A)$, поскольку подгруппа $\rho(A)$ сервантна в A.

Пусть группа A периодическая. Действие радикала на периодические группы полностью определяется его действием на группы вида $\mathbf{Z}(p)$ и $\mathbf{Z}(p^{\infty})$ [6, 7], так что существует группа B указанного вида, для которой $\rho(B) \subset \sigma(B)$. Группа B будет искомой, так как коциклические группы не имеют ненулевых собственных сервантных подгрупп. Лемма доказана.

Как было показано в [1], всякий радикал $\rho \in \mathcal{L}$ можно представить в виде H_V для подходящей группы V. Для $\rho \in \mathcal{L}_2$ это делается следующим образом: если идемпотентному радикалу ρ соответствует функция $\psi \colon \mathbf{P} \to M$, то достаточно положить $V = X \oplus Y$, где X — аддитивная группа всех рациональных чисел, знаменатели которых взаимно просты со всеми простыми $p \in \psi^{-1}(\mathbf{v})$, а Y есть прямая сумма групп $\mathbf{Z}(p)$ по всем $p \in \psi^{-1}(\mu)$. При этом $A \in R_{\rho}$ в том и только в том случае, когда факторгруппа A/t(A) является p-делимой для всех простых чисел $p \in \psi^{-1}(\mu)$, а сама группа A - p-делимой для всех $p \in \psi^{-1}(\lambda)$.

Теорема 6: Пусть $H_V \in \mathcal{L}_2$, где группа $V = X \oplus Y$ имеет указанный выше вид, и пусть класс \mathcal{U} содержит по крайней мере одну непериодическую группу. Тогда $H_V \wedge H_{\mathcal{U}} = H_{V \otimes \mathcal{U}}$.

Доказательство: Обозначим $\rho = H_V$, $\sigma = H_U$. Применив следствие 4 дважды, получаем неравенство $H_{V\otimes \mathcal{U}} \leqslant \rho \wedge \sigma$. Предположим, что оно является строгим. Тогда по предыдущей лемме существует группа B (вида $\mathbf{Z}(p)$, квазициклическая либо без кручения) такая, что $B \in \mathcal{E}(V \otimes \mathcal{U})$ и $B \in R_{\rho \wedge \sigma}$. Пусть $\psi \colon \mathbf{P} \to M$ есть функция, соответствующая идемпотентному радикалу H_V .

В $V \otimes \mathcal{U}$ есть хотя бы одна непериодическая группа, так что радикальный класс радикала $H_{V \otimes \mathcal{U}}$ содержит все делимые абелевы группы [5]; следовательно, имеем $B \ncong \mathbf{Z}(p^{\infty})$. Предположим теперь, что $B \cong \mathbf{Z}(p)$ для некоторого простого числа p. Из условия $B \in R_{\sigma}$ следует, что для какой-то группы $U \in \mathcal{U}$ справедливо неравенство $\operatorname{Hom}(U,B) \neq 0$, т. е. группа U не является p-делимой. Точно так же из $B \in R_{\rho}$ следует, что p-делимой не является группа V. Но тогда $V \otimes U$ имеет своим гомоморфным образом ненулевую группу $(V/pV) \otimes (U/pU)$. Данная группа изоморфна прямой сумме копий $\mathbf{Z}(p)$. Отсюда $H_{V \otimes \mathcal{U}}(B) = B$, что невозможно.

Осталось разобрать случай, когда B—группа без кручения. Из $B \in R_{\sigma}$ сразу следует, что для некоторой группы $U \in \mathcal{U}$ имеем $\operatorname{Hom}(U,B) \neq 0$. Далее, группа без кручения B входит в R_{ρ} и, значит, p-делима для любого $p \notin \psi^{-1}(v)$. Тогда B можно рассматривать как унитарный модуль над кольцом X; следовательно, группа $\operatorname{Hom}(U,B)$ также допускает X-модульную структуру. Отсюда

$$\operatorname{Hom}(X \otimes U, B) \cong \operatorname{Hom}(X, \operatorname{Hom}(U, B)) \neq 0,$$

что противоречит включению $B \in \mathcal{E}(V \otimes \mathcal{U}) \subseteq \mathcal{E}(V \otimes \mathcal{U})$. Теорема доказана.

Следствие 7: Пусть $H_{\mathcal{V}} \in \mathcal{L}_2$, а \mathcal{U} есть некоторый класс, содержащий хотя бы одну непериодическую группу. Тогда $H_{\mathcal{V}} \wedge H_{\mathcal{U}} = H_{\mathcal{V} \otimes \mathcal{U}}$.

Доказательство: Для $\mathcal{V} = \{X \oplus Y\}$ данный факт уже доказан в предыдущей теореме. Применяя теперь следствие 3, приходим к требуемому равенству.

Следствие 8: Если $H_V, H_U \in \mathcal{L}_2$, то $H_V \wedge H_U = H_{V \otimes U}$.

Доказательство: Из $H_U \nleq t$ нетрудно вывести, что U — непериодическая группа. Для получения нужного равенства остается применить следствие 7.

Утверждение следствия 8 верно и для любых конечных пересечений, так как $H_{V\otimes U}$ вновь будет элементом \mathcal{L}_2 . К сожалению, равенство $H_V\wedge H_U=$ $=H_{V\otimes U}$ не удается обобщить даже для ситуации $H_V\in\mathcal{L}_1,\ H_U\in\mathcal{L};$ в самом деле, абелевы группы $V=\mathbf{Z}(p^{\infty})$ и $U=\mathbf{Q}$ удовлетворяют условиям $H_V\in\mathcal{L}_1$ и $H_U \in \mathcal{L}_2$, но

$$H_V \wedge H_V = H_V \neq 0 = H_0 = H_{V \otimes V},$$

 $H_V \wedge H_U = H_V \neq 0 = H_0 = H_{V \otimes U}.$

Перейдем теперь к основному результату статьи.

Теорема 9: Для любого семейства $\{\sigma_i\}_{i\in I}\subseteq \mathcal{L}$ и любого $\rho\in\mathcal{L}$ выполнено

$$\rho \wedge \left(\bigvee_{i \in I} \sigma_i\right) = \bigvee_{i \in I} (\rho \wedge \sigma_i).$$

Доказательство: Сначала введем вспомогательные обозначения

$$\tau_i = \rho \wedge \sigma_i, \qquad \sigma = \bigvee_{i \in I} \sigma_i, \qquad \tau = \rho \wedge \sigma$$

 $\tau_i = \rho \wedge \sigma_i, \qquad \sigma = \bigvee_{i \in I} \sigma_i, \qquad \tau = \rho \wedge \sigma.$ Неравенство $\bigvee_{i \in I} \tau_i \leqslant \tau$ очевидно; осталось доказать, что $\tau \leqslant \bigvee_{i \in I} \tau_i.$

Разобьем доказательство на несколько случаев. Сначала мы предположим, что для всех $i \in I$ выполнено $\sigma_i \in \mathcal{L}_1$. Тогда $\sigma_i \leqslant t$, так что $\tau_i = \rho \wedge \sigma_i$ входит не только в \mathcal{L} , но и в \mathcal{L}_1 . Используя дистрибутивность решетки \mathcal{L} и тот факт, что \mathcal{L}_1 является полной подрешеткой в $I\mathcal{R}$, получаем

$$\bigvee_{i\in I} \tau_i = \bigvee_{i\in I} \tau_i = \bigvee_{i\in I} (\rho \widetilde{\wedge} \sigma_i) = \rho \widetilde{\wedge} (\bigvee_{i\in I} \sigma_i) = \rho \widetilde{\wedge} \sigma = \tau.$$

Пусть теперь $\rho \in \mathcal{L}_1$ (заметим, что этот случай не исключает предыдущий). Вновь имеем $\tau_i = \rho \wedge \sigma_i \in \mathcal{L}_1$ для любого $i \in I$. Далее,

$$\bigvee_{i\in I} \tau_i = \bigvee_{i\in I} \tau_i = \bigvee_{i\in I} (\rho \wedge \sigma_i) = \rho \wedge (\bigvee_{i\in I} \sigma_i) = \rho \wedge (\bigvee_{i\in I} \sigma_i) \geqslant \rho \wedge \sigma = \tau.$$

Нам осталось рассмотреть случай, когда $\rho \in \mathcal{L}_2$ и $\sigma_i \in \mathcal{L}_2$ по крайней мере для одного индекса $i \in I$. Как отмечалось ранее, можно выбрать группы $\{U_i\}_{i\in I}$ и V так, что σ_i и ρ суть $\mathrm{E}(U_i)$ -радикалы и $\mathrm{E}(V)$ -радикал соответственно. Тогда для класса $\mathcal{U} = \{U_i\}_{i \in I}$ имеем $H_{\mathcal{U}} = \sigma$. Применяя следствие 4 к одноэлементным классам $\{V\}$ и $\{U_i\}$, мы получаем, что для каждого $i \in I$ группа $V \otimes U_i$ входит в τ_i -радикальный класс. Поэтому

$$H_{V\otimes\mathcal{U}}\leqslant\bigvee_{i\in I}\tau_i\leqslant\tau=\rho\wedge\sigma=H_V\wedge H_{\mathcal{U}}.$$

Но по крайней мере одна из групп U_i является непериодической; в этом случае по следствию 7 получаем $\tau = H_{V \otimes \mathcal{U}}$, т. е. $\tau = \bigvee_{i \in I} \tau_i$. Теорема доказана.

В заключение рассмотрим другой тип дистрибутивности.

Пример: Покажем, что, вообще говоря, для T(F)-радикалов не выполняется дистрибутивный закон

$$\rho \vee (\sigma \wedge \tau) = (\rho \vee \sigma) \wedge (\rho \vee \tau).$$

Для этого найдем группу A такую, что $A \in P_{\rho} \cap P_{\sigma \wedge \tau}$ и $A \in R_{\rho \vee \sigma} \cap R_{\rho \vee \tau}$. В роли ρ , σ и τ будут выступать радикалы H_V , H_X и H_Y , порожденные подходящими рациональными группами идемпотентного типа. Фактически будет показано, что в этом случае

$$H_{V \oplus (X \otimes Y)} \neq H_{V \oplus X} \wedge H_{V \oplus Y}$$
.

Возьмем различные $p,q,r\in \mathbf{P}$; пусть $V=\mathbf{Q}^{(p)},~X=\mathbf{Q}^{(q)}$ и $Y=\mathbf{Q}^{(r)}$. Далее, положим $B=\mathbf{Q}^{(pq)}$ (группа всех рациональных чисел, знаменатели которых суть произведения некоторых степеней p и q) и $C=\mathbf{Q}^{(pr)}$. Через β и γ мы обозначим канонические гомоморфизмы $B\to B/X$ и $C\to C/Y$. Заметим, что факторгруппы B/X и C/Y обе изоморфны группе $\mathbf{Z}(p^{\infty})$; пусть $\varphi\colon B/X\to C/Y$ есть некоторый изоморфизм этих факторгрупп. Группу A зададим равенством

$$A = \{(b, c) \in B \oplus C \mid (\varphi \beta)(b) = \gamma(c)\}.$$

Легко убедиться, что гомоморфизм $A \to C$, который переводит всякую пару (b,c) в элемент c, является эпиморфизмом, а его ядро изоморфно X. Тогда из включений $C \in R_{\rho}$, $X \in R_{\sigma}$ и замкнутости радикальных классов относительно расширений следует $A \in R_{\rho \vee \sigma}$. Аналогично доказывается, что $A \in R_{\rho \vee \tau}$. Далее, справедлив изоморфизм $X \otimes Y \cong \mathbf{Q}^{(qr)}$, так что $A \in \mathcal{E}(X \otimes Y) = P_{\sigma \wedge \tau}$.

Остается показать, что для подходящим образом выбранного изоморфизма φ выполнено включение $A \in \mathcal{E}(V)$ и, значит, $\rho(A) = 0$. Имеем

$$B/X = (V+X)/X \cong V/(V \cap X) = V/(V \cap Y) \cong (V+Y)/Y = C/Y;$$

пусть $i \colon B/X \to C/Y$ обозначает соответствующий изоморфизм, т. е. для любого элемента $v \in V$ справедливо равенство i(v+X) = v+Y.

Факторгруппу C/Y (как и всякую p-группу) можно превратить в модуль над кольцом целых p-адических чисел \mathbf{Q}_p^* , полагая

$$\begin{split} & \left(\frac{n}{p^k} + \mathbf{Q}^{(r)}\right) \! \pi = \frac{n(s_0 + s_1 p + \ldots + s_{k-1} p^{k-1})}{p^k} + \mathbf{Q}^{(r)} & (n \in \mathbf{Z}), \\ & \text{если} \ \pi = s_0 + s_1 p + \ldots + s_m p^m + \ldots \in \mathbf{Q}_p^* & (s_j \in \{0, 1, \ldots, p-1\}). \end{split}$$

Пусть $\pi \in \mathbf{Q}_p^* \setminus \mathbf{Q}_p$ (мы считаем, что $\mathbf{Q}_p \subset \mathbf{Q}_p^*$) есть некоторое p-адическое число указанного выше вида, причем $s_0 \neq 0$. Эндоморфизм χ группы C/Y, задаваемый умножением на π , является автоморфизмом (обратный к нему автоморфизм χ^{-1} действует как умножение на π^{-1}); положим $\varphi = \chi i$.

Допустим, что $\operatorname{Hom}(V,A) \neq 0$. Это значит, что в A найдется ненулевая пара (b,c) такая, что для любого натурального k выполнено $(b/p^k,c/p^k) \in A$. При этом можно считать, что числа b и c целые (иначе просто домножим их на общий знаменатель), так что

$$\frac{b(s_0 + s_1 p + \dots + s_{k-1} p^{k-1})}{p^k} + \mathbf{Q}^{(r)} = (\varphi \beta) \left(\frac{b}{p^k}\right) = \gamma \left(\frac{c}{p^k}\right) = \frac{c}{p^k} + \mathbf{Q}^{(r)},$$

откуда следует, что $c-b\pi\in p^k\mathbf{Q}_p^*$ для всех k. Значит, $c=b\pi$, а это противоречит выбору элемента π . Итак, $A\in\mathcal{E}(V)$, что завершает построение примера.

Замечания: 1) Если записать полученное для ρ , σ , τ неравенство в виде

$$(\rho \wedge \rho) \vee (\rho \wedge \tau) \vee (\sigma \wedge \rho) \vee (\sigma \wedge \tau) \neq (\rho \vee \sigma) \wedge (\rho \vee \tau),$$

то нетрудно заметить, что в рассмотренном примере мы фактически построили вполне разложимые абелевы группы $K = V \oplus X$ и $L = V \oplus Y$ ранга 2 такие, что выполнено $H_{K \otimes L} \neq H_K \wedge H_L$. Итак, условия, налагаемые теоремой 6 на группу, которая порождает радикал H_V , действительно существенны.

2) С учетом теоремы 9 для тех же радикалов ρ , σ , τ имеем

$$\rho \vee \big(\sigma \wedge (\rho \vee \tau)\big) = \rho \vee (\sigma \wedge \rho) \vee (\sigma \wedge \tau) = \rho \vee (\sigma \wedge \tau) \neq (\rho \vee \sigma) \wedge (\rho \vee \tau),$$

при этом, очевидно, $\rho \leqslant \rho \lor \tau$. Отсюда получаем, что большая решетка $I\mathcal{R}$ не является модулярной, как и отмечалось в начале параграфа. Ясно, что не будет модулярной и подрешетка большой решетки $I\mathcal{R}$, порожденная подмножеством \mathcal{L} .

В свете теоремы 6 и следствия 7 уместен следующий вопрос. Пусть $V \neq 0$ и известно, что для всякого класса \mathcal{U} , содержащего хотя бы одну непериодическую группу, выполнено $H_V \wedge H_{\mathcal{U}} = H_{V \otimes \mathcal{U}}$. Следует ли отсюда, что $H_V \in \mathcal{L}_2$? Ответ пока неизвестен.

Литература

- [1] Тимошенко, Е.А. Т-радикалы в категории абелевых групп / Е.А. Тимошенко // Фундамент. и прикл. мат. 2007. Т. 13. №3. С. 193—208.
- [2] Кашу, А.И. Радикалы и кручения в модулях / А.И. Кашу. Кишинев: Штиинца, 1983. 156 с.
- [3] Мишина, А.П. Абелевы группы и модули / А.П. Мишина, Л.А. Скорняков. — М.: Наука, 1969. — 152 с.
- [4] Göbel, R. Semi-rigid classes of cotorsion-free abelian group / R. Göbel, S. Shelah // J. Algebra. − 1985. − Vol. 93. − №1. − P. 136–150.
- [5] Gardner, B.J. Two notes on radicals of abelian groups / B.J. Gardner // Comment. Math. Univ. Carolinae. 1972. Vol. 13. №3. P. 419–430.
- [6] Dickson, S.E. On torsion classes of abelian groups / S.E. Dickson //
 J. Math. Soc. Japan. 1965. Vol. 17. №1. P. 30-35.

[7] Курош, А.Г. Радикалы в теории групп / А.Г.Курош // Сиб. мат. журн. — 1962. — Т. 3. — №6. — С. 912—931.

Поступила в редакцию 29/VIII/2008; в окончательном варианте — 29/VIII/2008.

ON THE DISTRIBUTIVE LAWS FOR T-RADICALS OF ABELIAN GROUPS³

© 2008 E.A. Timoshenko⁴

The paper is devoted to the radicals defined by means of tensor product of Abelian groups. A question: what distributive laws hold for such radicals is considered?

Keywords and phrases: radical, tensor product, Abelian groups, distributivity.

Paper received 29/VIII/2008. Paper accepted 29/VIII/2008.

³Communicated by Dr. Sci. (Phys. & Math.) Prof. A.N. Panov.

⁴Timoshenko Egor Aleksandrovich (tea471@mail.tsu.ru), Dept. of General Mathematics, Tomsk State University, Tomsk, 634050, Russia.