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THE DISCRETE UNIVERSALITY OF THE PERIODIC
HURWITZ ZETA-FUNCTION

© 2007  R.Macaitiené!

The paper contains a survey on continuous and discrete universal-
ity theorems for periodic zeta-functions. A sketch of the proof in the
case of the discrete universality for the periodic Hurwitz zeta-function
is given. Also, joint generalizations for periodic Hurwitz zeta-functions
are formulated.

Introduction

Denote by Np, N, Z, R and C the sets of all non-negative integers, positive
integers, integers, real and complex numbers, respectively. Let 2 = {an : me
€ Ng} be a periodic sequence of complex numbers with minimal period ke N
and a € R, 0 < a < 1. The periodic Hurwitz zeta-function T(s o;2), S= o +it,
is defined, for 0 > 1, by the series
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It follows from the periodicity of the sequence 2 that, for o> 1,
154 [+ a
Us o) =5 ;‘ ac(s, T) (2)

where, for e R, 0 <p <1, ¢(sp) is the classical Hurwitz zeta-function. We
recall that in the half-plane o > 1 the Hurwitz zeta-function is defined by

- 1
UsP) =) ——s
2, e

Moreover, the Hurwitz zeta-function is analytically continuable to the whole
complex plane, except for a simple pole at S=1 with residue 1. Therefore, in
view of (2) we have that the periodic Hurwitz zeta-function T(s a;%) is also
analytically continuable to the whole S-plane, except for a simple pole at s=1

with residue

L 1 k-1 .
=
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If a=0, then T(s ;%) is an entire function.

By (1), if am=1 for all me Ny, then T(s, a; ) = ¢(s @). Thus, the function
C(s 0;2) is a generalization of the classical Hurwitz zeta-function.

Let A € R. Then the Lerch zeta-function L(\,a,s), for 0 > 1, is given by
o g27ikm

L()\., a, S) = nzo m,

and by analytic continuation elsewhere. Clearly, L(lk,(x, S) is a particular case
of the function (s, a;A).

1. Universality

A property of one mathematical object to have the influence for a large class
of other mathematical objects is understand as the universality. In analysis,
the first universal object was found by M. Fekete. He proved that there exists
a real power series

Z amx", xe[-1,1],
m=1

such that, for every continuous function g(x) on [-1,1], g(0) =0, there exists
a sequence of positive integers n, I(Iim Nk = +oo0, such that

Nk
. n
Iergor;anx = g(x)

uniformly in X € [-1,1]. Later, a numerous number of other universal in some
sense objects were found, however, these objects were not explicitly given. As
in the mentioned Fekete’s theorem, only the existence of universal objects was
proved. Only in 1975 S.M. Voronin obtained the universality of the Riemann
zeta-function T(S), so this function is the first explicitly given universal object.

We recall that -
9= =

m=1

o>1,

and C(S) has analytic continuation to the whole complex plane, except for a
simple pole at s=1 with residue 1. S.M. Voronin proved [11]| that every analyt-
ic function can be approximated by shifts T(s+it). More precisely, he obtained
the following remarkable statement.

Theorem 1. Let 0 <r < %. Suppose that the function f(S) is continuous
and non-vanishing on the disc {s€ C :|g < %}, and analytic in the interior of
this disc. Then, for every € >0, there exists a real number t = 1(€) such that

3 .
@g)r( C(s+ ) +it)— f(9)| <e
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A big number of number theorists were interested in this remarkable
Voronin’s result. A. Reich, S.M. Gonek, B. Bagchi, A. Laurincikas, K. Mat-
sumoto, J. Steuding, W. Schwarz, H. Mishou, H. Bauer, H. Nagoshi, the author
and others generalized the Voronin theorem for other zeta- and L-functions. At
the moment, it is known that the majority of classical zeta and L-functions are
universal in the Voronin sense. For example, Dirichlet L-functions, Dedekind
zeta-functions, L-functions of elliptic curves over the field of rational numbers,
zeta-functions of normalized eigenforms, some classes of Dirichlet series with
multiplicative coefficients, and even some classes of general Dirichlet series

(o)

Z ame™™S,  aneC, lim Ay = +oo,
1 m—oo

m=

have the universality property. By the Linnik-Ibragimov conjecture, all func-
tions in some half-plane defined by Dirichlet series, analytically continuable
to the left of the absolute convergence abscissa and satisfying some natural
growth conditions, are universal in the Voronin sense.

Theorem 1 has a more general form. Denote by meas{A} the Lebesgue mea-
sure of a measurable set ACR. Let D={se C: % < 0 < 1}. Then Chapter 6
of [5] contains the following version of the Voronin theorem.

Theorem 2. Suppose that K is a compact subset of the strip D with con-
nected complement, and f(s) is a continuous non-vanishing function on K which
is analytic in the interior of K. Then, for every € >0,

liminf lmeas {‘c € [0, T] :sup|t(s+it) — f(9)] < s} > 0.
Tooo T seK

Theorem 2 shows that the set of shifts {(s+it) which approximate a given
analytic function is sufficiently rich, its lower density is positive. On the other
hand, Theorems 1 and 2 are non-effective in the sense that we do not know
any value of T such that

sup|g(s+it) — f(9) < &.
seK

Theorem 2 follows in the following way. First, a limit theorem in the sense of
weak convergence of probability measures in the space H(D) of analytic on D
functions is proved. This means that the probability measure

%meas {t€[0,T]:¢(s+it) € A}, Ae B(H(D)), (3)

where B(H(D)) denotes the class of Borel sets of the space H(D), converges
weakly to some probability measure P on (H(D),B(H(D))) as T — oo. After
this, it is proved that the support of P is the set

{ge H(D) : g(s) # 0 or g(s) = 0}.

Now this together with the Mergelyan theorem, see, for example, [12], on ap-
proximation of analytic functions by polynomials imply the theorem.
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Theorem 2 has a continuous character, in it the shifts T(s+ it), where t
various continuously in the interval [0, T], are investigated. It is also possible
to consider the shifts C(s+ imh), where h >0 is a fixed number and me Ny.
In this case, we have the discrete version of universality. We state a discrete
analogue of Theorem 2.

Theorem 3. Suppose that K and f(s) are the same as in the statement of
Theorem 2. Then, for every € >0,

liminf
Nooo N+1

#{O <IN :suplg(s+ilh) — f(9)] < e} > 0.
seK
Theorem 3 is a modification of the results obtained in [9].

2. Continuous universality of T(s, a;2)

The properties of the function C(s, ;) are closely related to arithmetical
nature of the parameter a. The proof of the limit theorem for the measure (3)
is based on the fact that the system {logp: p isprime} is linearly independent
over the field of rational numbers Q. In the case of the function C(s, a;%2),
we have a similar situation if o is transcendental. Then the system {log(m+
+a) : me Np} is linearly independent over Q. In this case, the following theorem
is true.

Theorem 4. Suppose that o is transcendental. Then the probability measure
1 .
Tmeas {te[0,T]:C(s+it,0;A) € A}, Ae B(H(D)),

converges weakly to some probability measure P; on (H(D), B(H(D))) as T — oo.

The measure P is the distribution of one H(D)-valued random element
related to the function T(s, a;%A).
Let

Q= l_[ Ym,
m=0
where ym ={s€ C: |9 =1} for all me Ny. The torus Q is a compact topological
Abelian group, therefore on (Q, B(Q)) the probability Haar measure exists, and
this gives the probability space (Q,B(2), my). Denote by w(m) the projection

of m € Q to the coordinate space ym, M € N, and on the probability space
(Q, B(QQ), my) define the H(D)-valued random element (s, o, w;2A) by

amo (M)
(m+ a)s’

Us a, ;) = i
m=0

Then it turns out that the measure Pg coincides with the distribution of the
random element (S, o, w; ), i.e.

P.(A) =my(0eQ: (s amA)eh), AecBHD)).
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The proof of Theorem 4 is given in [1]. It is similar to that of a limit theorem
for the Lerch zeta-function, see [4].
In [1], the case

min 4
o<m<k-1 @l > 0 ( )

was considered. The later condition was used to prove that the support of the
measure P; is the whole of H(D). In [2], the positive density method developed
in 7] was applied, and the requirement (4) was removed. This allowed to obtain
the universality of the function C(s ;%) for all periodic sequences 2.

Theorem 5. Suppose that o is transcendental. Let K be a compact subset
of the strip D with connected complement, and let f(S) be a continuous on K
function which is analytic in the interior of K. Then, for every € >0,

liminf lmeas {'c € [0, T] :suplt(s+ir,a;A) — f(9) < e} > 0.
Too T K

Note that in Theorem 5, differently from Theorem 2, the approximated
function f(S) is not necessarily non-vanishing. This is conditioned by non-ex-
istence of the Euler product for the function C(s, a; ().

3. Discrete universality of (s, a; 2)

This section is devoted to a discrete version of Theorem 5. A theorem of
such a kind was proved in [6].

Theorem 6. Suppose that o is transcendental, and h> 0 is a fired number
such that exp{zﬁ} is rational. Let K and f(S) be the same as in the statement
of Theorem 5. Then, for every € >0,

- 1 .
liminf #{O<I gN:suplZ;(s+|Ih,oc;Ql)—f(s)|<e}>0.

The transcendence of o and a condition for the number h are applied to
obtain a probabilistic limit theorem in the space H(D) for the function (s, a; 2/).

The proof of this theorem is based on a limit theorem on the torus Q [6]. We
give its proof there.

Lemma 7. Suppose that o and h are the same as in the statement of
Theorem 6. Then the probability measure

On(A) & ﬁ#{og <N:(m+a)™M:meNg) e Al, AeB(Q)

converges weakly to the Haar measure My as N — oo,

Proof. The dual group of the group Q is

D dgf ézm,
m=0
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where Zy =7 for all me No. An element K= {ky,: me Np} € D, where only a
finite number of integers Ky are distinct from zero, acts on Q by

0 — of = 1_[ o n(m).
m=0

Therefore, the Fourier transform gn(kK) of the measure Qu is

0w - [ [ ooy = —=
Q m=0

N oo
~iknlh _

=0 m=0

N
Nilzexp{—ilhz kmlog(m+a)}. (5)
1=0 m=0

The transcendence of a implies the irrationality of

exp {i km log(m + a)} = ﬁ(m + a)km,
m=0 m=0

where only a finite numbers of integers kym # 0. On the other hand, the number
exp( 2m} is rational for all r € Z. Thus, for k# 0,

exp {—ihi kmn log(m + a)} # 1.
m=0

In view of this remark, (5) shows that

1, if k=0,

@ =1 L-expl=i(N+Dh §O ke log(m + o))

— , if k#0
(N + 1)(1 — exp{-ih 3 knlog(m+ a)})
m=0
Hence
. 1, if k=0,

and the lemma follows, since the Fourier transform of the Haar measure is the
right-hand side of (6).

Now let (e
 amexpl— (55
) =

and, for w € Q,
. — amm(m)exp (n+a )0-1
(s o 0;2) = ) o

m=0

’

where 07 > % is a fixed number. Then it is not difficult to see that the series

for Tn(s a;2A) and CTn(S a,w;2A) both converge absolutely for o > % A simple
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application of Lemma 7 shows that the probability measures

Pnn(A) = ﬁ#{o <I<N:C(s+ilhyo;2) € A), Ae B(H(D)), (7)
and
I’:’\N’n(A) = ﬁ#{o <I<N:G(s+ilho,w;2A) e A), AeB(H(D)), (8)

both converge weakly to the same probability measure P, on (H(D), B(H(D)))
as N — oo.

Let K be a compact subset of the strip D. Then in [1] it was proved that,
for transcendental a,

T

N 1 . .

lim limsup = [ sup|S(s+it,a;2) — Ca(s+ it, a;A)| =0,
T seK

=0 T 50

and, for almost all w € Q,

n—oo

-

N 1 ) ,

lim |Imsup—fsuplC(S+l1:,0L,0\);Ql)—Cn(s+l1:,0t,00;21)| =0,
T—ooo T i seK

The application of the Gallagher lemma, see [8], Lemma 1.4, leads to a discrete
version of the above mean approximation. We find that

N
lim limsup 1 Zsuplt(sﬂlh,a;m)—?;n(s+ilh,oc;9l)|:O,
OEK

N—00 Nooo +1 e
and, for almost all w € Q,

N
1
su s+ilh,a,w;A) — Ch(s+ilh, a, w; A)| = 0.
+1m2=0565|c< ) = )

lim limsu

n—oo N—>oop N

Now the later two relations together with weak convergence of the proba-
bility measures Pnp and Pnp allow to prove that the probability measures

Pn(A) = ﬁ#{o <IT<SN:g(s+ilh,o;2) € A}, AeB(H(D)),
and
Pn(A) = ﬁ#{o SIS N:g(s+ilho, ;) € A}, Ae B(H(D)),
for almost all w € Q, also converge weakly to the same probability measure P

on (H(D),B(H(D))) as N — co.

Define on Q the measurable measure preserving transformation ¢n, by
Pha(®) = ((M+ @)™ : me No) .

Then the properties of the numbers a and h imply the ergodicity of ¢@pq, and
a simple application of the Birkhoff-Khintchine theorem, see [10], leads to a
discrete limit theorem for the function (s a;2A) [6].
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Theorem 8. Let o and h be the same as in the statement of Theorem 6.
Then the probability measure
1
N+1

converges weakly to Pz as N — oo.

#O<I<N:g(s+ilho:A) e A, AeBH(D)),

Proof of Theorem 6. We already have seen in Section 3 that the support
of the measure P is the whole H(D). By the Mergelyan theorem there exists
a polynomial p(S) such that

€
sup|f(s) - p(s)l < 3, (9)
5K
and p(s) is an element of the support of P;. Then, denoting
€
6= {geH(D): supia(s) - p9l < 5.
seK 2
we obtain by Theorem 8 and properties of the support that

lim inf

N—oo

L #{0 LI <N:suplg(s+ilh ;) — p(9)] < E} > P(G) > 0.
1 scK 2

This together with (9) prove the theorem.

Theorem 6 and Rouché’s theorem yield a certain information on zeros of
the function £(s, a; ).

Theorem 9. Let o and h be the same as in the statement of Theorem 6.
Then, for any o1 and oy, % <01 <02 <1, and sufficiently large N, there exists
a constant € = ¢(o1,02,0;2A) > 0 such that the function T(s+imh,a;A) has a

zero in the disc
02 — 01

2

01+0

‘s— 1+ 02

2

more than for cN numbers m, 0 < m< N.

4. Joint case

We complete the paper with a joint generalization of Theorem 6. Let, for
j=1,..r, 2 ={amj : me No} be a periodic sequence of complex numbers with
minimal period Kj € N, 0 < aj < 1, and let T(s aj;%j) be the corresponding
periodic Hurwitz zeta-function. Denote by k the least common multiple of the
periods ki, ...,kr, and define

a1 A2 ... Air

a a Lo &
A= 21 22 2r

A1 A2 ... S

Then [3| contains the following joint universality theorem.
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Theorem 10. Suppose that ay,...,0, are algebraically independent over Q,
and that rank(A) = r. For each | =1,...r, let K; be a compact subset of the
strip D with connected complement, and let fj(s) be a continuous function on
Kj which is analytic in the interior of Kj. Then, for every € >0,

IiTm inf %meas {'c €[0,T]: sup suplC(s+it,aj;Aj) - fi(s)l < e} > 0.

1<j<r =K;

Also, a discrete version of Theorem 10 can be proved in the following form.

Theorem 11. Suppose that h > 0 is a fized number such that exp{%‘} 18
rational, and for A, Kj and fi(s), j=1,...r, the hypotheses of Theorem 10 are
satisfied. Then, for every € >0,

liminf

N—oo

1 1#{0 <IN sup sup[g(s+ilh,aj; ) = fj(9)l < e} > 0.

1<j<r =K;

The proof of Theorem 11 will be published elsewhere.
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