
228 Вестник СамГУ — Естественнонаучная серия. 2007. №7(57)

THE DISCRETE UNIVERSALITY OF THE PERIODIC
HURWITZ ZETA-FUNCTION

© 2007 R.Macaitienė1

The paper contains a survey on continuous and discrete universal-
ity theorems for periodic zeta-functions. A sketch of the proof in the
case of the discrete universality for the periodic Hurwitz zeta-function
is given. Also, joint generalizations for periodic Hurwitz zeta-functions
are formulated.

Introduction

Denote by N0, N, Z, R and C the sets of all non-negative integers, positive
integers, integers, real and complex numbers, respectively. Let A = {am : m ∈
∈ �0} be a periodic sequence of complex numbers with minimal period k ∈ �
and α ∈ R, 0 < α � 1. The periodic Hurwitz zeta-function ζ(s,α; A), s = σ + it,
is defined, for σ > 1, by the series

ζ(s,α; A) =
∞∑

m=0

am

(m + α)s . (1)

It follows from the periodicity of the sequence A that, for σ > 1,

ζ(s,α; A) =
1
ks

k−1∑
l=0

alζ
(
s,

l + α
k

)
, (2)

where, for β ∈ R, 0 < β � 1, ζ(s, β) is the classical Hurwitz zeta-function. We
recall that in the half-plane σ > 1 the Hurwitz zeta-function is defined by

ζ(s, β) =
∞∑

m=0

1
(m + β)s .

Moreover, the Hurwitz zeta-function is analytically continuable to the whole
complex plane, except for a simple pole at s = 1 with residue 1. Therefore, in
view of (2) we have that the periodic Hurwitz zeta-function ζ(s,α; A) is also
analytically continuable to the whole s-plane, except for a simple pole at s = 1
with residue

a
def
=

1
k

k−1∑
l=0

al.
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If a = 0, then ζ(s,α; A) is an entire function.
By (1), if am = 1 for all m ∈ �0, then ζ(s,α; A) = ζ(s,α). Thus, the function

ζ(s,α; A) is a generalization of the classical Hurwitz zeta-function.
Let λ ∈ R. Then the Lerch zeta-function L(λ,α, s), for σ > 1, is given by

L(λ,α, s) =
∞∑

m=0

e2πiλm

(m + α)s ,

and by analytic continuation elsewhere. Clearly, L( l
k ,α, s) is a particular case

of the function ζ(s,α; A).

1. Universality

A property of one mathematical object to have the influence for a large class
of other mathematical objects is understand as the universality. In analysis,
the first universal object was found by M. Fekete. He proved that there exists
a real power series

∞∑
m=1

amxm, x ∈ [−1, 1],

such that, for every continuous function g(x) on [−1, 1], g(0) = 0, there exists
a sequence of positive integers nk, lim

k→∞ nk = +∞, such that

lim
k→∞

nk∑
m=1

amxm = g(x)

uniformly in x ∈ [−1, 1]. Later, a numerous number of other universal in some
sense objects were found, however, these objects were not explicitly given. As
in the mentioned Fekete’s theorem, only the existence of universal objects was
proved. Only in 1975 S.M. Voronin obtained the universality of the Riemann
zeta-function ζ(s), so this function is the first explicitly given universal object.
We recall that

ζ(s) =
∞∑

m=1

1
ms , σ > 1,

and ζ(s) has analytic continuation to the whole complex plane, except for a
simple pole at s = 1 with residue 1. S.M. Voronin proved [11] that every analyt-
ic function can be approximated by shifts ζ(s+ iτ). More precisely, he obtained
the following remarkable statement.

Theorem 1. Let 0 < r < 1
4 . Suppose that the function f (s) is continuous

and non-vanishing on the disc {s ∈ C : |s| � 1
4 }, and analytic in the interior of

this disc. Then, for every ε > 0, there exists a real number τ = τ(ε) such that

max
|s|�r

∣∣∣∣∣ζ(s + 3
4
+ iτ
) − f (s)

∣∣∣∣∣ < ε.
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A big number of number theorists were interested in this remarkable
Voronin’s result. A. Reich, S.M. Gonek, B. Bagchi, A. Laurinčikas, K. Mat-
sumoto, J. Steuding, W. Schwarz, H. Mishou, H. Bauer, H. Nagoshi, the author
and others generalized the Voronin theorem for other zeta- and L-functions. At
the moment, it is known that the majority of classical zeta and L-functions are
universal in the Voronin sense. For example, Dirichlet L-functions, Dedekind
zeta-functions, L-functions of elliptic curves over the field of rational numbers,
zeta-functions of normalized eigenforms, some classes of Dirichlet series with
multiplicative coefficients, and even some classes of general Dirichlet series

∞∑
m=1

ame−λms, am ∈ C, lim
m→∞ λm = +∞,

have the universality property. By the Linnik–Ibragimov conjecture, all func-
tions in some half-plane defined by Dirichlet series, analytically continuable
to the left of the absolute convergence abscissa and satisfying some natural
growth conditions, are universal in the Voronin sense.

Theorem 1 has a more general form. Denote by meas{A} the Lebesgue mea-
sure of a measurable set A ⊂ R. Let D = {s ∈ C : 1

2 < σ < 1}. Then Chapter 6
of [5] contains the following version of the Voronin theorem.

Theorem 2. Suppose that K is a compact subset of the strip D with con-
nected complement, and f(s) is a continuous non-vanishing function on K which
is analytic in the interior of K. Then, for every ε > 0,

lim inf
T→∞

1
T

meas

{
τ ∈ [0, T ] : sup

s∈K
|ζ(s + iτ) − f (s)| < ε

}
> 0.

Theorem 2 shows that the set of shifts ζ(s+ iτ) which approximate a given
analytic function is sufficiently rich, its lower density is positive. On the other
hand, Theorems 1 and 2 are non-effective in the sense that we do not know
any value of τ such that

sup
s∈K

|ζ(s + iτ) − f (s)| < ε.
Theorem 2 follows in the following way. First, a limit theorem in the sense of
weak convergence of probability measures in the space H(D) of analytic on D
functions is proved. This means that the probability measure

1
T

meas {τ ∈ [0, T ] : ζ(s + iτ) ∈ A} , A ∈ B(H(D)), (3)

where B(H(D)) denotes the class of Borel sets of the space H(D), converges
weakly to some probability measure P on (H(D),B(H(D))) as T → ∞. After
this, it is proved that the support of P is the set

{g ∈ H(D) : g(s) � 0 or g(s) ≡ 0}.
Now this together with the Mergelyan theorem, see, for example, [12], on ap-
proximation of analytic functions by polynomials imply the theorem.
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Theorem 2 has a continuous character, in it the shifts ζ(s + iτ), where τ
various continuously in the interval [0, T ], are investigated. It is also possible
to consider the shifts ζ(s + imh), where h > 0 is a fixed number and m ∈ N0.
In this case, we have the discrete version of universality. We state a discrete
analogue of Theorem 2.

Theorem 3. Suppose that K and f(s) are the same as in the statement of
Theorem 2. Then, for every ε > 0,

lim inf
N→∞

1
N + 1

#

{
0 � l � N : sup

s∈K
|ζ(s + ilh) − f (s)| < ε

}
> 0.

Theorem 3 is a modification of the results obtained in [9].

2. Continuous universality of ζ(s,α; A)

The properties of the function ζ(s,α; A) are closely related to arithmetical
nature of the parameter α. The proof of the limit theorem for the measure (3)
is based on the fact that the system {log p : p is prime} is linearly independent
over the field of rational numbers  . In the case of the function ζ(s,α; A),
we have a similar situation if α is transcendental. Then the system {log(m +
+α) : m ∈ N0} is linearly independent over  . In this case, the following theorem
is true.

Theorem 4. Suppose that α is transcendental. Then the probability measure
1
T

meas {τ ∈ [0, T ] : ζ(s + iτ,α; A) ∈ A} , A ∈ B(H(D)),

converges weakly to some probability measure Pζ on (H(D),B(H(D))) as T → ∞.
The measure Pζ is the distribution of one H(D)-valued random element

related to the function ζ(s,α; A).
Let

Ω =

∞∏
m=0

γm,

where γm = {s ∈ C : |s| = 1} for all m ∈ N0. The torus Ω is a compact topological
Abelian group, therefore on (Ω,B(Ω)) the probability Haar measure exists, and
this gives the probability space (Ω,B(Ω),mH). Denote by ω(m) the projection
of ω ∈ Ω to the coordinate space γm, m ∈ N, and on the probability space
(Ω,B(Ω),mH) define the H(D)-valued random element ζ(s,α,ω; A) by

ζ(s,α,ω; A) =
∞∑

m=0

amω(m)
(m + α)s .

Then it turns out that the measure Pζ coincides with the distribution of the
random element ζ(s,α,ω; A), i.e.

Pζ(A) = mH (ω ∈ Ω : ζ(s,α,ω; A) ∈ A) , A ∈ B(H(D)).
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The proof of Theorem 4 is given in [1]. It is similar to that of a limit theorem
for the Lerch zeta-function, see [4].

In [1], the case
min

0�m�k−1
|am| > 0 (4)

was considered. The later condition was used to prove that the support of the
measure Pζ is the whole of H(D). In [2], the positive density method developed
in [7] was applied, and the requirement (4) was removed. This allowed to obtain
the universality of the function ζ(s,α; A) for all periodic sequences A.

Theorem 5. Suppose that α is transcendental. Let K be a compact subset
of the strip D with connected complement, and let f (s) be a continuous on K
function which is analytic in the interior of K. Then, for every ε > 0,

lim inf
T→∞

1
T

meas

{
τ ∈ [0, T ] : sup

s∈K
|ζ(s + iτ,α; A) − f (s)| < ε

}
> 0.

Note that in Theorem 5, differently from Theorem 2, the approximated
function f (s) is not necessarily non-vanishing. This is conditioned by non-ex-
istence of the Euler product for the function ζ(s,α; A).

3. Discrete universality of ζ(s,α; A)

This section is devoted to a discrete version of Theorem 5. A theorem of
such a kind was proved in [6].

Theorem 6. Suppose that α is transcendental, and h > 0 is a fixed number
such that exp{2π

h } is rational. Let K and f (s) be the same as in the statement
of Theorem 5. Then, for every ε > 0,

lim inf
N→∞

1
N + 1

#

{
0 � l � N : sup

s∈K
|ζ(s + ilh,α; A) − f (s)| < ε

}
> 0.

The transcendence of α and a condition for the number h are applied to
obtain a probabilistic limit theorem in the space H(D) for the function ζ(s,α; A).
The proof of this theorem is based on a limit theorem on the torus Ω [6]. We
give its proof there.

Lemma 7. Suppose that α and h are the same as in the statement of
Theorem 6. Then the probability measure

QN(A)
def
=

1
N + 1

#
{
0 � l � N :

(
(m + α)−ilh : m ∈ �0

) ∈ A
}
, A ∈ B(Ω),

converges weakly to the Haar measure mH as N → ∞.
Proof. The dual group of the group Ω is

D def
=

∞⊕
m=0

�m,
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where �m = � for all m ∈ �0. An element k = {km : m ∈ �0} ∈ D, where only a
finite number of integers km are distinct from zero, acts on Ω by

ω→ ωk =

∞∏
m=0

ωkm(m).

Therefore, the Fourier transform gN(k) of the measure QN is

gN(k) =
∫
Ω

∞∏
m=0

ωkm(m)dQN =
1

N + 1

N∑
l=0

∞∏
m=0

(m + α)−ikmlh =

=
1

N + 1

N∑
l=0

exp

⎧⎪⎪⎨⎪⎪⎩−ilh
∞∑

m=0

km log(m + α)

⎫⎪⎪⎬⎪⎪⎭ . (5)

The transcendence of α implies the irrationality of

exp

⎧⎪⎪⎨⎪⎪⎩
∞∑

m=0

km log(m + α)

⎫⎪⎪⎬⎪⎪⎭ =
∞∏

m=0

(m + α)km ,

where only a finite numbers of integers km � 0. On the other hand, the number
exp{2πr

h } is rational for all r ∈ Z. Thus, for k � 0,

exp

⎧⎪⎪⎨⎪⎪⎩−ih
∞∑

m=0

km log(m + α)

⎫⎪⎪⎬⎪⎪⎭ � 1.

In view of this remark, (5) shows that

gN(k) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, if k = 0,

1 − exp{−i(N + 1)h
∞∑

m=0
km log(m + α)}

(N + 1)(1 − exp{−ih
∞∑

m=0
km log(m + α)})

, if k � 0.

Hence

lim
N→∞ gN(k) =

{
1, if k = 0,
0, if k � 0,

(6)

and the lemma follows, since the Fourier transform of the Haar measure is the
right-hand side of (6).

Now let

ζn(s,α; A) =
∞∑

m=0

amexp{−(m+α
n+α )σ1 }

(m + α)s ,

and, for ω ∈ Ω,
ζn(s,α,ω; A) =

∞∑
m=0

amω(m)exp{−(m+α
n+α )σ1 }

(m + α)s ,

where σ1 >
1
2 is a fixed number. Then it is not difficult to see that the series

for ζn(s,α; A) and ζn(s,α,ω; A) both converge absolutely for σ > 1
2 . A simple
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application of Lemma 7 shows that the probability measures

PN,n(A) =
1

N + 1
# {0 � l � N : ζn(s + ilh,α; A) ∈ A) , A ∈ B(H(D)), (7)

and

P̂N,n(A) =
1

N + 1
# {0 � l � N : ζn(s + ilh,α,ω; A) ∈ A) , A ∈ B(H(D)), (8)

both converge weakly to the same probability measure Pn on (H(D),B(H(D)))
as N →∞.

Let K be a compact subset of the strip D. Then in [1] it was proved that,
for transcendental α,

lim
n→∞ lim sup

T→∞
1
T

T∫
0

sup
s∈K

|ζ(s + iτ,α; A) − ζn(s + iτ,α; A)| = 0,

and, for almost all ω ∈ Ω,

lim
n→∞ lim sup

T→∞
1
T

T∫
0

sup
s∈K

|ζ(s + iτ,α,ω; A) − ζn(s + iτ,α,ω; A)| = 0,

The application of the Gallagher lemma, see [8], Lemma 1.4, leads to a discrete
version of the above mean approximation. We find that

lim
n→∞ lim sup

N→∞
1

N + 1

N∑
m=0

sup
s∈K

|ζ(s + ilh,α; A) − ζn(s + ilh,α; A)| = 0,

and, for almost all ω ∈ Ω,

lim
n→∞ lim sup

N→∞
1

N + 1

N∑
m=0

sup
s∈K

|ζ(s + ilh,α,ω; A) − ζn(s + ilh,α,ω; A)| = 0.

Now the later two relations together with weak convergence of the proba-
bility measures PN,n and P̂N,n allow to prove that the probability measures

PN(A) =
1

N + 1
# {0 � l � N : ζ(s + ilh,α; A) ∈ A} , A ∈ B(H(D)),

and

P̂N(A) =
1

N + 1
# {0 � l � N : ζ(s + ilh,α,ω; A) ∈ A} , A ∈ B(H(D)),

for almost all ω ∈ Ω, also converge weakly to the same probability measure P
on (H(D),B(H(D))) as N →∞.

Define on Ω the measurable measure preserving transformation ϕh,α by

ϕh,α(ω) =
(
(m + α)−ih : m ∈ �0

)
ω.

Then the properties of the numbers α and h imply the ergodicity of ϕh,α, and
a simple application of the Birkhoff–Khintchine theorem, see [10], leads to a
discrete limit theorem for the function ζ(s,α; A) [6].
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Theorem 8. Let α and h be the same as in the statement of Theorem 6.
Then the probability measure

1
N + 1

# {0 � l � N : ζ(s + ilh,α; A) ∈ A} , A ∈ B(H(D)),

converges weakly to Pζ as N → ∞.
Proof of Theorem 6. We already have seen in Section 3 that the support

of the measure Pζ is the whole H(D). By the Mergelyan theorem there exists
a polynomial p(s) such that

sup
s∈K

| f (s) − p(s)| < ε
2
, (9)

and p(s) is an element of the support of Pζ. Then, denoting

G =

{
g ∈ H(D) : sup

s∈K
|g(s) − p(s)| < ε

2

}
,

we obtain by Theorem 8 and properties of the support that

lim inf
N→∞

1
N + 1

#

{
0 � l � N : sup

s∈K
|ζ(s + ilh,α; A) − p(s)| < ε

2

}
� Pζ(G) > 0.

This together with (9) prove the theorem.

Theorem 6 and Rouché’s theorem yield a certain information on zeros of
the function ζ(s,α; A).

Theorem 9. Let α and h be the same as in the statement of Theorem 6.
Then, for any σ1 and σ2, 1

2 < σ1 < σ2 < 1, and sufficiently large N, there exists
a constant c = c(σ1, σ2,α; A) > 0 such that the function ζ(s + imh,α; A) has a
zero in the disc ∣∣∣∣∣s − σ1 + σ2

2

∣∣∣∣∣ < σ2 − σ1

2
more than for cN numbers m, 0 � m � N.

4. Joint case

We complete the paper with a joint generalization of Theorem 6. Let, for
j = 1, ..., r, A j = {am j : m ∈ �0} be a periodic sequence of complex numbers with
minimal period k j ∈ �, 0 < α j � 1, and let ζ(s,α j; A j) be the corresponding
periodic Hurwitz zeta-function. Denote by k the least common multiple of the
periods k1, ..., kr, and define

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
a11 a12 . . . a1r

a21 a22 . . . a2r

. . . . . . . . . . . .

ak1 ak2 . . . akr

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ .
Then [3] contains the following joint universality theorem.
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Theorem 10. Suppose that α1, ...,αr are algebraically independent over  ,
and that rank(A) = r. For each j = 1, ..., r, let Kj be a compact subset of the
strip D with connected complement, and let f j(s) be a continuous function on
Kj which is analytic in the interior of Kj. Then, for every ε > 0,

lim inf
T→∞

1
T

meas

⎧⎪⎪⎨⎪⎪⎩τ ∈ [0, T ] : sup
1� j�r

sup
s∈Kj

|ζ(s + iτ,α j; A j) − f j(s)| < ε
⎫⎪⎪⎬⎪⎪⎭ > 0.

Also, a discrete version of Theorem 10 can be proved in the following form.

Theorem 11. Suppose that h > 0 is a fixed number such that exp{2π
h } is

rational, and for A, Kj and f j(s), j = 1, ..., r, the hypotheses of Theorem 10 are
satisfied. Then, for every ε > 0,

lim inf
N→∞

1
N + 1

#

⎧⎪⎪⎨⎪⎪⎩0 � l � N : sup
1� j�r

sup
s∈Kj

|ζ(s + ilh,α j; A j) − f j(s)| < ε
⎫⎪⎪⎬⎪⎪⎭ > 0.

The proof of Theorem 11 will be published elsewhere.
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