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VALUE DISTRIBUTION THEOREMS
FOR THE ESTERMANN ZETA-FUNCTION

© 2007 A. Laurinčikas1

In the paper, a survey of mean-value estimates, zero distribution, uni-
versality and limit theorems in the sense of weak convergence of prob-
ability measures for the Estermann zeta-function is presented.

Introduction

This paper is a text of author’s talk given at the International Conference
”Algebra and Number Theory” dedicated to the 80th anniversary of Professor
V.E.Voskresenskii. (Samara, Russia, May 21–28, 2007). The author thanks the
organizers of this conference for hospitality and for financial support.

Denote by �, �, � and � the sets of all positive integers, integers, real and
complex numbers, respectively. For arbitrary α ∈ � and m ∈ �, the generalized
divisor function σα(m) is defined by

σα(m) =
∑
d/m

dα.

We have that
σ0(m) �ε mε.

Since, σα(m) = mασ−α(m), the estimate

σα(m) �ε mε+max(Reα,0) (1)

is valid.
Let, as usual, s = σ+it denote a complex variable, and (k, l) = 1. The Estermann
zeta-function E

(
s; k

l ,α
)
, for σ > max(1 + Reα, 1), is defined by

E
(
s;

k
l
,α
)
=

∞∑
m=1

σα(m)
ms exp

{
2πim

k
l

}
.

For analytic continuation of the function E
(
s; k

l ,α
)
to the whole complex plane,

we recall the definition of the Lerch zeta-function. Let λ ∈ � and β ∈ �, 0 <
β � 1. The Lerch zeta-function L(λ, β, s), for σ > 1, is defined by

L(λ, β, s) =
∞∑

m=0

e2πimλ

(m + β)s
.

1Laurinčikas Antanas (antanas.laurincikas@maf.vu.lt), Dept. of Number Theory and
Probability Theory, Vilnius University, 24, 03225 Vilnius, Lithuania.
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If λ � �, then L(λ, β, s) is analytically continuable to an entire function, while
for λ ∈ �, the function L(λ, β, s) becomes the Hurwitz zeta-function

ζ(s, β) =
∞∑

m=0

1
(m + β)s .

The function ζ(s, β) is meromophically continuable to the whole complex plane
where it has a simple pole at s = 1 with residue 1.
It is not difficult to see that, for σ > max(Reα + 1, 1),

E
(
s;

k
l
,α
)
= lα−s

l∑
v=1

exp
{
2πi

vk
l

}
L
(
1,

v
l
, s − α

)
L
(vk

l
, 1, s

)
. (2)

The latter equation shows that the function E
(
s; k

l ,α
)
is analytic in the whole

complex plane, except for two simple poles at s = 1 and s = 1 + α if α � 0,
and a double pole s = 1 if α = 0.
Let k be defined by kk ≡ 1(mod l). Then (2) and the functional equation for
the Lerch zeta-function, see [11], imply the following functional equation for
E
(
s; k

l ,α
)
.

E
(
s;

k
l
,α
)
=

1
π

(2π
l

)2s−1−α
Γ(1 − s)Γ(1 + α − s)

)
×

(
cos

πα

2
E
(
1 + α − s;

k
l
,α
)
− cos

(
πs − πα

2

)
E
(
1 + α − s;

k
l
,α
))
.

Therefore, without loss of generality we may assume that a
def
= Reα � 0.

Note that the function E
(
s; k

l ,α
)
, for α = 0, was introduced by T. Estermann

in [3]. The case of α ∈ [−1, 0] was considered in [9].
In the lecture, we discuss the following value distribution problems for the
Estermann zeta-function:
• Mean square estimates
• Zero distribution
• Universality
• Probabilistic limit theorems

1. Mean square of E
(
s; k

l ,α
)

Asymptotics and estimates for mean values of zeta-functions play an im-
portant role in analytic number theory. For example, the famous Lindelöf hy-
pothesis for the Riemann zeta-function ζ(s) which says that, for every ε > 0,

ζ
(1
2
+ it
)
�ε tε, t � t0 > 0,

is equivalent to the mean value estimates

1
T

∫ T

0

∣∣∣∣ζ(12 + it
)∣∣∣∣2k�k,ε T ε, k ∈ �
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There exists a conjecture that, for all k � 0 and T → ∞,

Ik(T )
def
=

1
T

∫ T

0

∣∣∣∣ζ(12 + it
)∣∣∣∣2k

dt ∼ c(k)(log T )k
2

(3)

with some constant c(k) > 0. G.H.Hardy and J.E. Littlewood proved [5] that
c(1) = 1, and A.E. Ingham found [7] the value c(2) = 1

2π2 . Let u � 0 be bounded

by a constant. Then in [10] it was obtained that c
( u√

2 log log T

)
= 1. Of course,

the conjecture (3) is very complicated.
Also, the estimates for Ik(T ) are known. The first results in this direction were
obtained by K. Ramachandra. For example, he proved in [17] that

I 1
2
(T ) � T (log T )

1
2 .

The further progress in the field belongs to D.R.Heath-Brown. In [6], he proved
the estimate

Ik(T ) &k T (log T )k2
(4)

for all rational k � 0, and the estimate

Ik(T ) �k T (log T )k2
(5)

for k = 1
m , m ∈ �. Moreover, he obtained under the Riemann hypothesis (all

non-trivial zeros of ζ(s) lie on the critical line) that (4) holds for all k � 0
and (5) is true for 0 � k � 2. To prove this, D.R. Heath-Brown applied the
Gabriel convexity theorems, see, for example, [10].
For the Estermann zeta-function, the mean square was studied in [18], see also
[19].
Theorem 1. For σ > 1

2 ,

lim
T→∞

1
T

∫ T

1

∣∣∣∣E(σ + it;
k
l
,α
)∣∣∣∣2dt =

ζ(2σ − 2a)ζ2(2σ − a)ζ(2σ)
3(4σ − 2a)

.

Moreover, if a < 0, then

∫ T

1

∣∣∣∣E(σ + it,
k
l
,α
)∣∣∣∣2dt �

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

T, if σ > 1
2 ,

T log2 T, if σ = 1
2 ,

T 2(1−σ), if a + 1
2 < σ <

1
2 ,

T 1−2a log2 T, if σ = a + 1
2 ,

T 3−4σ+2a, if σ < a + 1
2 .

For the proof, a representation of E
(
s; k

l ,α
)
by Dirichlet L-functions is used.

Denote by ϕ(m) the Euler function,

ϕ(m) = m
∏
p/m

(
1 − 1

p

)
,

by µ(m) the Möbius function,

µ(m) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1, if m = 1,
(−1)r, if m = p1...pr, pj is prime, j = 1, .., r,
0, otherwise.



218 A. Laurinčikas

Moreover, let
τ(χ) =

∑
m mod q

χ(m) exp
{
2πi

m
q

}
be the Gauss sum associated to the Dirichlet character χmod q. Then, for all s,

E
(
s;

k
l
,α
)
=
∑
d|l

1

dsϕ
(

l
d

) ∑
b| l

d(
b, l

db

)
= 1

µ
( l
db

) ∑
χ(mod b)
primitive

τ(χ)χ
(
kd
( l
b

))
×

×λ(s, d, χ,α)L(s, χ)L(s − α, χ),
where L(s, χ) denote a Dirichlet L–function, and λ(α+ it,m, χ,α) � |σα(m)|. From
this it follows that∫ T

1

∣∣∣∣E(σ + it;
k
l
,α
)∣∣∣∣2dt �

∑
b|l

∑
χ(mod b)
primitive

(∫ T

1
|L(σ + it, χ)|4dt

∫ T

1
|L(σ − α + it, χ)|4dt

) 1
2 ,

and to prove Theorem 1 it remains to apply the results for the fourth moment
of Dirichlet L-functions.
Y. Kamiya in [8] obtained an average mean square estimate for E

(
s; k

l ,α
)
. He

proved that, for A > 49 and T →∞,
l∑

k = 1
(k, l) = 1

∫
[−T,T ]\[−A,A]

∣∣∣∣E(12 + it;
k
l
, 0
)∣∣∣∣2dt � lT log4 lT.

The latter estimate was improved in [20].
Theorem 2. Uniformly for l � T as T → ∞,

1
ϕ(l)

l∑
k = 1

(k, l) = 1

∫ T

1

∣∣∣∣E(12 + it;
k
l
, 0
)∣∣∣∣2dt ' T log4 T.

If l is prime, then
l−1∑
k=1

∫ T

1

∣∣∣∣E(12 + it;
k
l
, 0
)∣∣∣∣2dt =

l5 − l4 + 7l3 − 11l2 + 5l + 1

2π2(l − 1)l2(l + 1)
T log4 T + O(T log3 T ).

2. Zero distribution of E
(
s; k

l ,α
)

The zero distribution of zeta-functions is one of the most interesting prob-
lems and has numerous applications. B. Riemann was the first who observed a
close relation of the Riemann zeta-function to the distribution of prime num-
bers. In 1896 de la Vallée Poussin and Hadamard proved independently that
ζ(1 + it) � 0, and this allowed them to obtain the asymptotic law of prime
numbers:

π(x) =
∑
p�x

1 ∼
∫ x

2

du
log u

, x → ∞.
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As it was noted in Section 2, the famous Riemann hypothesis (RH) asserts
that all non-trivial zeros of ζ(s) lie on the critical line σ = 1

2 . If this hypothesis
is true, then

π(x) =
∫ x

2

du
log u

+ O(x
1
2 log x).

From the latter estimate RH also follows.
The zero distribution of the function E

(
s; k

l ,α
)
depends on the parameters k

l
and α. It is not difficult to see that

E
(
s;

k
l
,α
)
� 0

for σ > 3. The functional equation for E
(
s; k

l ,α
)
shows that, for σ < −2 +Reα,

E
(
s; k

l ,α
)
= 0 near the real axis. Zeros ρ = β+ iγ of E

(
s; k

l ,α
)
in this region are

called trivial. It is easily seen that

T � �{ρ is trivial : |ρ| � T } � T.

The non-trivial zeros of E
(
s; k

l ,α
)
lie in the region {s ∈ � : −2 + Reα � σ � 3}.

Denote by N
(
T ; k

l ,α
)
the number of non-trivial zeros of E

(
s; k

l ,α
)
with |γ| � T .

Then in [21] the following asymptotic formula has been obtained.
Theorem 3. Let T → ∞. Then

N
(
T ;

k
l
,α
)
=

2T
π

log
lT

2πe
+ O(log T ).

We see that the main term in the formula for N
(
T ; k

l ,α
)
does not depend

on the parameters k and α.
Theorem 3 is a corollary of a general result obtained in [21]. Recall that a =
= Reα. Let B > 3 − a be a constant, and T → ∞. Then∑

β > −B
|γ| � T

(B + β) = (2B + a + 1)
T
π

log
Tl

2πe
+ O(log T ).

This and Theorem 3 imply the asymptotics for the mean value of the real
parts of non-trivial zeros.
Theorem 4. [21]. Let T → ∞. Then

N−1
(
T ;

k
l
,α
) ∑
ρ non − trivial

|γ| � T

β =
a + 1

2
+ O(T−1).

Theorem 4 suggests an idea that the non-trivial zeros of E
(
s; k

l ,α
)
lie on

the line σ = a+1
2 . However, if RH holds, this is not true in general. Really, by

the definition of E
(
s; k

l ,α
)

E(s; 1,α) = ζ(s)ζ(s − α). (6)

Thus, if RH holds, then E(s; 1,α) = 0 on the lines σ = 1
2 and σ = 1

2 + a, and
E(s; 1,α) � 0 on the line σ = a+1

2 .
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Denote by N
(
σ, T ; k

l ,α
)
the number of non-trivial zeros ρ = β + iγ of the func-

tion E
(
s; k

l ,α
)
with β > σ and |γ| � T . Then in [21] the following bounds for

N
(
σ, T ; k

l ,α
)
were obtained.

Theorem 5. Let T → ∞. Then uniformly in δ > 0

N
(1
2
+ δ; T,

k
l
,α
)
� T log log T

δ
� log log T

δ log T
N
(
T ;

k
l
,α
)
,

and, for fixed σ > 1
2 ,

N
(
σ, T ;

k
l
,α
)
� T.

For the proof the Littlewood theorem, the Jensen formula and the Jensen
inequality on convex functions are applied.
Theorem 5 shows that the set of zeros on the right of the curve

σ =
1
2
+ ψ(t)

log log t
log t

,

where ψ(t) > 0 and ψ(t) → ∞ as t → ∞, has zero density in the set of all
non-trivial zeros. Example (6) leads to the following conjecture.
Conjecture. At least a positive proportion of the non-trivial zeros of E

(
s; k

l ,α
)

is clustered around the lines σ = 1
2 and σ =

1
2 + a.

3. Universality

In [22] S.M.Voronin obtained the universality of the Riemann zeta-function.
Let 0 < r < 1

4 , and let f (s) be a continuous non-vanishing function on the disc
|s| � r which is analytic in the interior of this disc. Then he proved that, for
every ε > 0, there exists a real number τ = τ(ε) such that

max
|s|�r

∣∣∣∣ζ(s + 3
4
+ iτ
)
− f (s)

∣∣∣∣< ε.
Later, S.M.Gonek, A.Reich, B.Bagchi, K.Matsumoto, J. Stending, R. Stending,
W. Schwarz, R.Garunkštis, H.Mishou, J.Genys, V.Garbaliauskienė, H.Nagoshi,
R.Macaitienė, the author and others improved and generalized the Voronin
theorem. Define

νT (...) =
1
T

meas{τ ∈ [0, T ] : ...},
where meas{A} denotes the Lebesgue measure of a measurable set A ⊂ �, and
in place of dots a condition satisfied by τ is to be written. The final version
of the Voronin theorem is the following [10].
Theorem 6. Let K be a compact subset of the strip D0 = {s ∈ � : 1

2 < σ < 1}
with connected complement, and let f (s) be a continuous non-vanishing function
on K which is analytic in the interior of K. Then, for every ε > 0,

lim inf
T→∞ νT (sup

s∈K
|ζ(s + iτ) − f (s)| < ε) > 0.



Some value distribution theorems for the Estermann zeta-function 221

The case of the function E
(
s; k

l ,α
)
is more complicated, since the factor

exp
{
2πimk

l

}
is not multiplicative. Let χ be the Dirichlet character mod l, and,

for σ > 1 (we recall that a � 0),

E(s; χ,α) =
∞∑

m=1

σα(m)
ms χ(m).

Thus, in the definition of E
(
s; k

l ,α
)
the arithmetic function exp

{
2πimk

l

}
is re-

placed by a multiplicative function χ(m). It turns out that E
(
s; k

l ,α
)
is a linear

combination of the functions E(s; χ,α). For simplicity, suppose that l is a prime
number.
Theorem 7. [4]. Let l be prime. Then

E
(
s;

k
l
,α
)
=

1
ϕ(l)

∑
χ(mod l)
χ � χ0

τ(χ)χ(k)E(s; χ,α) + Λ(s,α)E(s; χ0,α),

where, for σ > 0,

Λ(s,α) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
2l − l1−s − ls

ls(l − 1)(1 − l−s)2
, if α = 0,

l − l1+α−s − l1+2α + l1+2α−s − ls + lα+s

ls(l − 1)(1 − lα)(1 − l−s)(1 − lα−s)
, otherwise.

The statement of Theorem 7 is also valid in the opposite direction.
Theorem 8. [4]. Let l be prime, and χ be a character mod l. Then

E(s; χ,α) =
1
τ(χ)

∑
m(mod l)

χ(m)E
(
s;

m
l
,α
)

if χ � χ0, and otherwise

E(s; χ0,α) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(1 − l−s)2E(s; 1, 0), if α = 0,

ls − ls+α − 1 + lα−s + l2α − l2α−s

ls(1 − lα)
E(s; 1,α), otherwise.

In any case,

E(s; χ,α) =
∏

p

(
1 − χ(p)

ps

)−1(
1 − χ(p)

ps−α
)−1
= L(s, χ)L(s − α, χ);

the Euler product representation is valid for σ > max(1 + a, 1) while the later
formula holds for all s. If χ � χ0, then E(s; χ,α) is an entire function. E(s; χ0,α)
has simple poles at s = 1 and s = 1 + α.

The proofs of Theorems 7 and 8 are based on the following assertions. Let
(k, l) = 1. Then

exp
{
2πi

k
l

}
=

1
ϕ(l)

∑
χ(mod l)

τ(χ)χ(k)
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and
τ(χ)χ(k) =

∑
m(mod l)

χ(m) exp
{
2πi

mk
l

}
.

Moreover,

exp
{
2πi

k
l

}
=

1
ϕ(l)

∑
m|l(

m, l
m

)
= 1

µ
(m

l

) ∑
χ(mod m)
primitive

τ(χ)χ
(
k
( l
m

))
.

Since the function E(s; χ,α) has the Euler product, a joint universality for
it can be proved. Note that the first joint universality theorem for Dirich-
let L–functions with pairwise non-equivalent characters was obtained by S.M
Voronin in [23].
Theorem 9. [4]. Suppose that a < −1, l � 5 is prime, and that, for p = 2, 3,

∞∑
m=1

|σα(pm)|
pmβ

< 1 (7)

with some β ∈
(

1
2 , 1
)
. For 1 � j � ϕ(l), let χ j be a Dirichlet character mod l,

Kj be a compact subset of the strip Dβ = {s ∈ � : β < σ < 1} with connected
complement, and let gj(s) be a continuous non-vanishing function on Kj which
is analytic in the interior of Kj. Then, for every ε > 0,

lim inf
T→∞ νT ( sup

1� j�ϕ(l)
sup
s∈Kj

|E(s + iτ; χ j,α) − gj(s)| < ε) > 0.

Now Theorems 7 and 9 imply the universality of the Estermann zeta-func-
tion.
Theorem 10. [10]. Suppose that k � 1, l � 1, a < −1, l � 5 is prime, and that,
for p = 2, 3, (7) holds. Let K be a compact subset of the strip Dβ with connected
complement, and let f (s) be a continuous function on K which is analytic in
the interior of K. Then, for every ε > 0,

lim inf
T→∞ νT

(
sup
s∈K

∣∣∣∣E(s + iτ;
k
l
,α
)
− f (s)

∣∣∣∣< ε)> 0.

Note that in Theorem 10, differently from Theorem 6, the function f (s) is not
necessarily non-vanishing on K. This difference is explained by the existence of
the Euler product for ζ(s) while, for k � 1, l � 1, the function E

(
s; k

l ,α
)
has not

this product.
Theorem 10 gives some information on the zero distribution of the function
E
(
s; k

l ,α
)
.

Corollary. Under the assumptions of Theorem 10, for fixed σ ∈ (β, 1) and
T → ∞,

T � N
(
σ, T ;

k
l
,α
)
� T.

Moreover, the real parts of zeros of the function E
(
s; k

l ,α
)
lie dense in the in-

terval (β, 1).
In Theorem 10, the number l is prime. However, we conjecture that the func-
tion E

(
s; k

l ,α
)
is universal in the Voronin sense for all l.
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4. Limit theorems

The first probabilistic result for zeta-functions was obtained by H. Bohr
and B. Jessen. Let R be any closed rectangle on the complex plane with the
edges parallel to the axes, and let Lσ(T,R) denote the Jordan measure of the
set

{t ∈ [0, T ] : log ζ(σ + it) ∈ R}.
Suppose that σ > 1. Then in [1] they proved that there exists the limit

lim
T→∞

Lσ(T,R)
T

= Wσ(R)

which depends only on σ and R. In [2] an analogous result was obtained for
σ > 1

2 . Let

G = {s ∈ � : σ >
1
2
}\

⋃
s j=σ j+it j

{s = σ + it j :
1
2
< σ < σ j},

where s j runs through all zeros of ζ(s) in the region 1
2 < σ < 1. Denote by

L1,σ(T,R) the Jordan measure of the set

{t ∈ [0, T ] : σ + it ∈ G, log ζ(σ + it) ∈ R}.
Then in [2] H. Bohr and B. Jessen proved that there exists the limit

lim
T→∞

L1,σ(T,R)

T
= W1,σ(R)

which depends only on σ and R. For the proof of the above results the theory
of sums of convex curves was used.
K. Matsumoto estimated [15], [16] the rate of convergence in Bohr-Jessen’s
theorems.
Bohr-Jessen’s ideas were developed by A.Wintner, V.Borchsenius, A. Sel-
berg, P.D.T.A. Elliott, A.Ghosh, B.Bagchi, K.Matsumoto, J. Steuding,
W. Schwarz, R.Kačinskaitė, R. Šleževičienė-Steuding, J.Genys, R.Macaitienė,
V.Garbaliauskienė, the author and others.
The modern version of Bohr-Jessen’s results can be stated in the following
form. Let B(S ) stand for the class of Borel sets of the space S , and let Pn and
P, n ∈ �, be probability measures on (S ,B(S )). We recall that Pn converges
weakly to P as n → ∞ if, for every real continuous bounded function f on S ,

lim
n→∞

∫
S

f dPn =

∫
S

f dP.

Theorem 11. [10]. Suppose that σ > 1
2 . Then on (�,B(�)) there exists a prob-

ability measure Pσ such that the probability measure

νT (ζ(σ + it) ∈ A), A ∈ B(�),

converges weakly to Pσ as T → ∞.
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Note that the explicit form of the limit measure Pσ can be given.
Now let γ = {s ∈ � : |s| = 1} denote the unit circle on the complex plane, and

Ω =
∏

p

γp,

where γp = γ for each prime p. By the Tikhonov theorem, with the product
topology and pointwise multiplication, the infinite-dimensional torus Ω is a com-
pact topological Abelian group. Therefore, on (Ω,B(Ω)) the probability Haar
measure mH can be defined, and this gives the probability space (Ω,B(Ω),mH).
Denote by ω(p) the projection of ω ∈ Ω to the coordinate space γp, and put,
for m ∈ �,

ω(p) =
∑
pr‖m

ωr(p),

where pr‖m means that pr|m but pr+1 � m. On the probability space
(Ω,B(Ω),mH), define, for σ > 1

2 , the complex-valued random element E
(
σ; k

l ,α,ω
)

by

E
(
σ;

k
l
,α,ω

)
=

∞∑
m=1

σα(m)ω(m)
mσ

exp
{
2πim

k
l

}
,

and denote by P�E,σ its distribution, i.e.,

P�E,σ(A) = mH

(
ω ∈ Ω : E

(
σ;

k
l
,α,ω

)
∈ A
)
, A ∈ B(�).

Theorem 12. [12]. Suppose that σ > 1
2 , a � 0 and k � 1, l � 1. Then the

probability measure

νT

(
E
(
σ + iτ;

k
l
,α
)
∈ A
)
, A ∈ B(�),

converges weakly to P�E,σ as T → ∞.
Theorem 12 admits a joint generalization. Let, for σ > max(1, 1 + Reα j),

(k j, l j) = 1,

E
(
s;

k j

l j
,α j

)
=

∞∑
m=1

σα j(m)

ms exp
{
2πim

k j

l j

}
, j = 1, ..., r.

Denote
�r = � × ... × �︸������︷︷������︸

r

.

Suppose that aj � 0, j = 1, ..., r, and for min1� j�r σ j >
1
2 and ω ∈ Ω, define

E(σ1, ..., σr;ω) =
(
E
(
σ1;

k1

l1
,α1,ω

)
, ..., E

(
σr;

kr

lr
,αr,ω

))
,

where

E
(
σ j;

k j

l j
,α j,ω

)
=

∞∑
m=1

σα j(m)ω(m)

mσ j
exp
{
2πim

k j

l j

}
, j = 1, .., r.
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Theorem 13. [14]. Suppose that min1� j�r σ j >
1
2 , aj � 0 and k j � 1, l j � 1, j =

= 1, ..., r. Then the probability measure

νT

((
E
(
σ1 + iτ;

k1

l1
,α1

)
, ..., E

(
αr + iτ;

kr

lr
,αr

))
∈ A
)
, A ∈ B(�r),

converges weakly to the distribution of the random element E(σ1, ..., σr;ω) as
T → ∞.

Another generalization of Theorem 12 is a limit theorem in the space of
meromorphic functions. Let D1 = {s ∈ � : σ > 1

2 }, and let M(D1) denote the
space of meromorphic on D1 functions equipped with the topology of uniform
convergence on compacta. Moreover, H(D1) is the space of analytic on D1 func-
tions with the same topology. H(D1) is a subspace of M(D1).
On the probability space (Ω,B(Ω),mH) define the H(D1)-valued random element

E
(
s;

k
l
,α,ω

)
=

∞∑
m=1

σα(m)ω(m)
ms exp

{
2πim

k
l

}
,

and let
PE,H(A) = mH

(
ω ∈ Ω : E

(
s;

k
l
,α,ω

)
∈ A
)
, A ∈ B(H(D)),

be its distribution. Then we have the following result [13].
Theorem 14. Suppose that a � 0 and k � 1, l � 1. Then the probability measure

νT

(
E
(
s + iτ;

k
l
,α
)
∈ A
)
, A ∈ B(M(D1)),

converges weakly to PE,H as T → ∞.
A joint version of Theorem 14 also can be obtained.
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[2] Bohr, H. Über die Wertverteilung der Riemannschen Zetafunktion /
H. Bohr, B. Jessen // Zweite Mitteilung, Acta Math. – 1932. – 58. –
P. 1–55.

[3] Estermann, T. On the representation of a number as the sum of two
products / T. Estermann // Proc. London Math. Soc. – 1930. – 31. –
P. 123–133.

[4] On the universality of Estermann zeta-functions / R. Garunkštis [et al] //
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[10] Laurinčikas,A. Limit theorems for the Riemann Zeta-function / A. Lau-
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A. Laurinčikas. (Submitted).

[15] Matsumoto, K. Discrepancy estimates for the value-distribution of the Rie-
mann zeta-function I / K. Matsumoto // Acta Arith. – 1987. – 48. –
P. 167–190.

[16] Matsumoto, K. Discrepancy estimates for the value-distribution of the Rie-
mann zeta-function III / K. Matsumoto // Acta Arith. – 1988. – 50. –
P. 315–337.

[17] Ramachandra, K. Some remarks on the mean value of the Riemann zeta-
function III / K. Ramachandra // Ann. Acad. Sci. Fenn. – 1980. – Ser.
A.I. – 5. – P. 145–158.
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