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VALUE DISTRIBUTION THEOREMS
FOR THE ESTERMANN ZETA-FUNCTION

© 2007 A. Laurin¢ikas?

In the paper, a survey of mean-value estimates, zero distribution, uni-
versality and limit theorems in the sense of weak convergence of prob-
ability measures for the Estermann zeta-function is presented.

Introduction

This paper is a text of author’s talk given at the International Conference
"Algebra and Number Theory” dedicated to the 80th anniversary of Professor
V.E.Voskresenskii. (Samara, Russia, May 21-28, 2007). The author thanks the
organizers of this conference for hospitality and for financial support.

Denote by N, Z, R and C the sets of all positive integers, integers, real and
complex numbers, respectively. For arbitrary a € C and me N, the generalized
divisor function o,(m) is defined by

ou(m) = " d°.

d/m
We have that
op(m) < nT.
Since, 04(M) = M*o_u(mM), the estimate
Oa(m) <. me+max(Rea,O) (1)

is valid.
Let, as usual, s= o+it denote a complex variable, and (k,1) = 1. The Estermann
zeta-function E(S; ll—(,(l), for 0 > max(1 + Rea, 1), is defined by

(s 5o > 2D expfomim)

m=1

For analytic continuation of the function E(S; 'f,(x) to the whole complex plane,
we recall the definition of the Lerch zeta-function. Let A € R and P € R,0 <
f < 1. The Lerch zeta-function L(A,p,S), for o> 1, is defined by

xRk

L()\., [?), S) = nz):;) (mTB)S
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If A¢ Z, then L(A,P,S) is analytically continuable to an entire function, while
for A € Z, the function L(\,p,S) becomes the Hurwitz zeta-function

= 1
t(sP) = <
2 e

The function (s, ) is meromophically continuable to the whole complex plane
where it has a simple pole at s=1 with residue 1.
It is not difficult to see that, for o> max(Rea + 1,1),

|
(s 1 a)= 12 VZ:;exp{Znivl—k}L(l, Vs-a) (o) )

The latter equation shows that the function E(S; 'l—‘,a) is analytic in the whole
complex plane, except for two simple poles at S=1 and s=1+a if a #0,
and a double pole s=1 if a=0.

Let k be defined by kk = 1(modl). Then (2) and the functional equation for
the Lerch zeta-function, see [11]|, imply the following functional equation for
E(s; 'I—‘, a).

)_ l (2_3'5)25—1—(1

| T(1- 901 +a-9)x

TT

(cos Jtz—OLE(l T II—( oc)— cos(ns— ?)E(l — II—( a)).
Therefore, without loss of generality we may assume that a® Rea <0.
Note that the function E(S; II—(,OL), for a =0, was introduced by T. Estermann
in [3]. The case of a €[-1,0] was considered in [9].
In the lecture, we discuss the following value distribution problems for the
Estermann zeta-function:
e Mean square estimates
e Zero distribution
e Universality
e Probabilistic limit theorems

1. Mean square of E(S; 'T‘,a)

Asymptotics and estimates for mean values of zeta-functions play an im-
portant role in analytic number theory. For example, the famous Lindelof hy-
pothesis for the Riemann zeta-function ¢(S) which says that, for every & > 0,

2;(% + it)<<8 tt>1 >0,

is equivalent to the mean value estimates

%£T|C(% + it)|2k<<k,8 T, ke N
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There exists a conjecture that, for all k>0 and T — oo,

1
(M & L f |§ +it) Xt ~ c(k)(log TY< (3)
with some constant c(k) > 0. G.H. Hardy and J.E. Littlewood proved [5] that
c(1) =1, and A.E.Ingham found [7] the value ¢(2) = 535. Let u > 0 be bounded

by a constant. Then in [10] it was obtained that C( 1. Of course,

- )
v2loglog T
the conjecture (3) is very complicated.

Also, the estimates for Ix(T) are known. The first results in this direction were
obtained by K. Ramachandra. For example, he proved in [17] that
1(T) < T(log T)z.

The further progress in the field belongs to D.R. Heath-Brown. In [6], he proved
the estimate

(T) > T(log T)* (4)
for all rational k> 0, and the estimate

Ik(T) <« T(log T)¥ (5)
for kK = =, me IN. Moreover, he obtained under the Riemann hypothesis (all

non—tr1v1al zeros of (S) lie on the critical line) that (4) holds for all k > 0
and (5) is true for 0 < k < 2. To prove this, D.R. Heath-Brown applied the
Gabriel convexity theorems, see, for example, [10].

For the Estermann zeta-function, the mean square was studied in [18], see also
19].

Theorem 1. For o> 2,

2 (20 - 2a)¢2(20 — a)(20)
f|E0+|t—a|dt: s 29 .

lim =

Tooo |

Moreover, if a<0, then

T, if 6> %
Tlog?T, if =3,

f | 0+|t |dt<< T2(-0), if a+3<0<3,
TI-210g’ T, if o=a+ 3,
T3-do+2a if o<a+sz.

For the proof, a representation of E( T ) by Dirichlet L-functions is used.
Denote by ¢(m) the Euler function,

1
p(m =m[ ](1- =),
p/m P
by w(m) the Mobius function,

1, ifm=1
w(m) =< (-1)", if m=pe...p, pj is prime, j=1, .1,

0, otherwise.
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Moreover, let

)= ) umexplanic)

mmod q

be the Gauss sum associated to the Dirichlet character y modd. Then, for all s,

k 1 | _ T
b Yot 3 g 3
R4 bl y(mod b)
(b, dl_b)= 1 primitive
xM(s, d, x, @)L(s, x)L(S — o, %),
where L(S,%) denote a Dirichlet L-function, and A(a+it,m,y, a) < |o,(mM)|. From
this it follows that

fT|E(0+ it; - | dt <« Z Z f IL(o +it, X)|4dtf IL(o — a +it, X)l"’dt)%
1

bil' y(mod b)
primitive

and to prove Theorem 1 it remains to apply the results for the fourth moment
of Dirichlet L-functions.

Y. Kamiya in [8] obtained an average mean square estimate for E(S; II—(,OL). He
proved that, for A>49 and T — oo,

k 2
}: Lf +n oﬂdt<|Tm¢rr
[TTI- AA] [

(kI)—l

The latter estimate was improved in [20].
Theorem 2. Uniformly for | <T as T — oo,

|
200 [EGmofaxTiogT
k=1

1) =1
If | is prime, then

-1 T 5 4 3 2
1 k 2 P—1"+7°P =111 +51 +1
E(= +it; —,0)| dt = Tlog* T + O(T log® T).
ZL£|(2+'W’H 272( - DI2(1 + 1) g T+0(Tlog™T)

2. Zero distribution of E( T )

The zero distribution of zeta-functions is one of the most interesting prob-
lems and has numerous applications. B. Riemann was the first who observed a
close relation of the Riemann zeta-function to the distribution of prime num-
bers. In 1896 de la Vallée Poussin and Hadamard proved independently that
(1 +it) # 0, and this allowed them to obtain the asymptotic law of prime

1=y 1~ [ o x o

p<x

numbers:
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As it was noted in Section 2, the famous Riemann hypothesis (RH) asserts
that all non-trivial zeros of £(s) lie on the critical line o = 3. If this hypothesis
is true, then

n(x) = f ot O(xz log x).

From the latter estimate RH also follows
The zero distribution of the function E( T ) depends on the parameters lT(
and o. It is not difficult to see that

k

E(s; T );t 0

for 0 > 3. The functional equation for E( ;II—(, ) shows that, for o0 < -2 + Rea,

E(S, I,(x)— 0 near the real axis. Zeros p = +iy of E( =, ) in this region are
called trivial. It is easily seen that

T < f{pistrivial : |p| < T} < T.

The non-trivial zeros of E( T ) lie in the region {s€ C: -2+ Rea < 3}

o<
Denote by N(T; T ) the number of non-trivial zeros of E(S, l,a) with |y <

Then in [21] the following asymptotic formula has been obtained.
Theorem 3. Let T — oo. Then

k 2T T
N(T; T )= — Iog 7t O(log T).
We see that the main term in the formula for N(T, T ) does not depend
on the parameters Kk and o.
Theorem 3 is a corollary of a general result obtained in [21]. Recall that a=
= Rea. Let B> 3 —a be a constant, and T — oo. Then

T Tl
> (B+p)=(@B+a+1)—log5— +O(logT).
T 2me
p>-B
M<T
This and Theorem 3 imply the asymptotics for the mean value of the real

parts of non-trivial zeros.
Theorem 4. [21]. Let T — co. Then

k a+1
-1(T. _ -1
N (T,I—,a) Z p="F5—+O(T™).
p non — trivial
M<T

Theorem 4 suggests an idea that the non-trivial zeros of E( T ) lie on
at+l

the line 0 = %=. However, if RH holds, this is not true in general. Really, by
the definition of E(S; 'I—‘,(x)

E(s 1, a) = T(s)L(s - a). (6)
Thus, if RH holds, then E(s;1,a) = 0 on the lines o = % and 0 = %+ a, and
E(s;1,0) # 0 on the line o = a%l.
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Denote by N(O,T; II—(,OL) the number of non-trivial zeros p = ff +iy of the func-
tion E(S; 'I—‘,oc) with f >0 and |y| < T. Then in [21] the following bounds for

N(O,T; II—(,OL) were obtained.
Theorem 5. Let T — co. Then uniformly in & >0

Kk

N(% Lo T, T’O‘)« TloglogT < loglog T

) ologT

1

and, for fized o > 3,

N(o.T; 'I-( a)<T.
For the proof the Littlewood theorem, the Jensen formula and the Jensen

inequality on convex functions are applied.

Theorem 5 shows that the set of zeros on the right of the curve

1 log logt

o=3+vl logt

where y(t) > 0 and y(tf) - o as t — oo, has zero density in the set of all
non-trivial zeros. Example (6) leads to the following conjecture.

>

Conjecture. At least a positive proportion of the non-trivial zeros of E(S; 'f,(x)

1s clustered around the lines o = % and o = % +a

3. Universality

In [22] S.M. Voronin obtained the universality of the Riemann zeta-function.
Let 0<r< %, and let f(S) be a continuous non-vanishing function on the disc
|8 < r which is analytic in the interior of this disc. Then he proved that, for

every € >0, there exists a real number t = 1(¢) such that

max
BN

Later, S.M. Gonek, A.Reich, B. Bagchi, K. Matsumoto, J. Stending, R. Stending,
W. Schwarz, R.Garunkstis, H. Mishou, J. Genys, V. Garbaliauskiené, H. Nagoshi,
R. Macaitiené, the author and others improved and generalized the Voronin
theorem. Define

o(s+ % + ir)—f(s)|< €.

1
vr(...) = ?meas{r €[0,T]:..},

where meas{A} denotes the Lebesgue measure of a measurable set AcC R, and
in place of dots a condition satisfied by T is to be written. The final version
of the Voronin theorem is the following |[10].

Theorem 6. Let K be a compact subset of the strip Dg = {se€ C : % <o<1}
with connected complement, and let T(S) be a continuous non-vanishing function
on K which is analytic in the interior of K. Then, for every € >0,

lim inf v (sup [2(s + it) — f(9)] < &) > 0.
T seK



Some value distribution theorems for the FEstermann zeta-function 221

The case of the function E(S; ll—(,OL) is more complicated, since the factor

exp{2nim'|—‘} is not multiplicative. Let y be the Dirichlet character modl, and,
for 0> 1 (we recall that a<0),

E(sya) =) %x(m)-

m=1

Thus, in the definition of E(S; 'I—‘,oc) the arithmetic function exp{Znim'T‘} is re-

placed by a multiplicative function y(m). It turns out that E(S; 'l—‘,(x) is a linear
combination of the functions E(S;y, ). For simplicity, suppose that | is a prime
number.

Theorem 7. [4]. Let [ be prime. Then

k 1
E(s o= o D, TOHKES X @) + Al a)E(S 10, ).
| o(l)
x(modl)
X # %o
where, for o >0,
21 — |15 s
, if a=0,
e ] FI=DE-T97 *
(s0)= | — |L+o-s _ |1+2a | |1420-S _|S 4 |o+S
otherwise.

IS0 — 1)L — 19)(L - I9)(1 — le-s)

The statement of Theorem 7 is also valid in the opposite direction.
Theorem 8. [4]. Let [ be prime, and ¥ be a character modl. Then

1 — m
E(s%0) = 7= m(%I)x(m)E(s; T

if ¥ # %o, and otherwise

(1 - 1"52E(s. 1,0), if a=0,
E(S; XOaOl) = [S_ ISt _ 1 4 |9-S 4 |2¢ _ |20-8 -
IS(1 — I%) E(s;1,a), otherwise.

In any case,

(s ) = [ (- 2271 - £B) - Ls Lis- .y
p

the Euler product representation is wvalid for o > max(l + a,1) while the later
formula holds for all S. If v # %o, then E(S;y, a) is an entire function. E(S; %o, o)
has simple poles at S=1 and s=1+ a.

The proofs of Theorems 7 and 8 are based on the following assertions. Let
(k,1) =1. Then

exp{2ni K

1
== > @)
=5 X(%D
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and ik
ﬁmm=§:ﬂwwmmT}
m(mod 1)
Moreover,

K 1 m I
eplznipl= o5 ), w(T) 2L @)
mil ¥(mod m)
(m n|_1): 1 primitive
Since the function E(S;yx,a) has the Euler product, a joint universality for
it can be proved. Note that the first joint universality theorem for Dirich-
let L—functions with pairwise non-equivalent characters was obtained by S.M
Voronin in [23].
Theorem 9. [4]. Suppose that a< -1, | > 5 is prime, and that, for p=2,3,

Z |Ga(p )l <1 (7)
m=1

with some B € (%,1) For 1 < j < (), let xj be a Dirichlet character mod I,
Kj be a compact subset of the strip Dg = {s€ C : f < 0 < 1} with connected
complement, and let Qj(s) be a continuous non-vanishing function on K;j which
is analytic in the interior of Kj. Then, for every € >0,

I|m infvr( sup sup|E(s+it;yj,a)—gj(s) <e)>0.
T—eo 1<) <g() s=K;

Now Theorems 7 and 9 imply the universality of the Estermann zeta-func-
tion.
Theorem 10. [10]. Suppose that k# 1,11, a<-1,1>5 is prime, and that,
for p=2,3, (7) holds. Let K be a compact subset of the strip Dg with connected
complement, and let f(S) be a continuous function on K which is analytic in
the interior of K. Then, for every € > 0,

I|m|nfvT sup E s+ iT; k f(s)|< g)>

—)00

Note that in Theorem 10, dzﬁerently from Theorem 6, the function f(9) is not
necessarily non-vanishing on K. This difference is explained by the existence of
the Euler product for T(S) while, for k# 1,1 # 1, the function E(S; II—(,OL) has not
this product.
Theorem 10 gives some information on the zero distribution of the function
E(s; 'T‘,a).

Corollary. Under the assumptions of Theorem 10, for fixed o € (B,1) and

T — oo,

T«N@TT

Moreover, the real parts of zeros of the function E(S; 'l—(,(x) lie dense in the in-
terval (B,1).

In Theorem 10, the number | is prime. However, we conjecture that the func-
tion E( T ) is universal in the Voronin sense for all I.

)<< T.
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4. Limit theorems

The first probabilistic result for zeta-functions was obtained by H. Bohr
and B. Jessen. Let R be any closed rectangle on the complex plane with the
edges parallel to the axes, and let Ls(T,R) denote the Jordan measure of the
set

{te[0,T]:logt(o+it) e R}
Suppose that ¢ >1. Then in [1] they proved that there exists the limit
. L¢(T,R
lim ——=
T

T—oo

= WO(R)

which depends only on ¢ and R In [2] an analogous result was obtained for
1
0> 5. Let
_ 1 L1
G={seC:0> 5}\ U {s=o+itj: §<0<0j},
Sj=0j+ltj

where s; runs through all zeros of T(S) in the region % < 0 < 1. Denote by

L16(T,R) the Jordan measure of the set
{te[0,T]:o0+iteG,logl(o+it) € R}
Then in [2] H. Bohr and B. Jessen proved that there exists the limit

. Lig(T,R
lim 1,0( )

T oo T = Wl,U(R)

which depends only on 0 and R. For the proof of the above results the theory
of sums of convex curves was used.

K. Matsumoto estimated [15], [16] the rate of convergence in Bohr-Jessen’s
theorems.

Bohr-Jessen’s ideas were developed by A.Wintner, V.Borchsenius, A.Sel-
berg, P.D.T.A. Elliott, A.Ghosh, B.Bagchi, K.Matsumoto, J.Steuding,
W. Schwarz, R.Kadinskaité, R.SleZeviciené-Steuding, J.Genys, R.Macaitiené,
V. Garbaliauskiené, the author and others.

The modern version of Bohr-Jessen’s results can be stated in the following
form. Let B(S) stand for the class of Borel sets of the space S, and let P, and
P, n € N, be probability measures on (S, B(S)). We recall that P, converges
weakly to P as N — oo if, for every real continuous bounded function f on S,

IimffdPn:ffdP.
N—ooo S IS

Theorem 11. [10]. Suppose that ¢ > % Then on (C,B(C)) there exists a prob-
ability measure Py such that the probability measure

vr(C(o +it) € A), A e B(C),

converges weakly to P; as T — oo.
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Note that the explicit form of the limit measure P; can be given.
Now let y ={se C:|g =1} denote the unit circle on the complex plane, and

Q= ana
p

where yp =y for each prime p. By the Tikhonov theorem, with the product
topology and pointwise multiplication, the infinite-dimensional torus Q is a com-
pact topological Abelian group. Therefore, on (Q,B(Q)) the probability Haar
measure My can be defined, and this gives the probability space (Q, B(2), my).
Denote by w(p) the projection of w € Q to the coordinate space yp, and put,
for me N,
o(p) = > o' (p),
plim

where p'lIm means that p'im but p*tfm On the probability space
(Q, B(Q), my), define, for o > %, the complex-valued random element E(o; 'l—‘, a, (n)
by

k
I—,(I,(,l)

)= i w exp{Zniml—(},

E(o; I

m=1

and denote by PE’O its distribution, i.e.,
k
PEa(A) = mu(0 € Q1 E(oi 7.0, 0)c A), Ac B(O).

Theorem 12. [12]. Suppose that ¢ > %, a<0and k# 1,1 # 1. Then the
probability measure

VT(E(O +iT; II—(, a)e A), A e B(0),

converges weakly to ch as T — oo,
Theorem 12 admits a joint generalization. Let, for o > max(1,1 + Rea,;),

(kj.1)) =1,
.kj \_ = Oa'(m)
S(s7))= 2

exp{ZnimT—jj}, j=1,..r.

Denote

C'=Cx..xC.

r

Suppose that a; <0, j=1,..,r, and for mini¢j< oj > % and w € Q, define

E(o1,...,0r; ) = (E(Gl; ll(—ll,al,m), s E(O‘r; I&,ar,m)),
r

where

K. Gy ki,
E(oj; ﬁ,ajaw)= n; %exp{%mﬁ}, J=Lor
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Theorem 13. [14]. Suppose that minigj<r 0j > %, a<0andkj#=1,1;#1, j=
=1,..,r. Then the probability measure

vi{(E(on + 1522 ). .o Elor + 11 ) A), A B(E.
1 r

converges weakly to the distribution of the random element E(o4,...,0r; ®) as
T — oo.

Another generalization of Theorem 12 is a limit theorem in the space of
meromorphic functions. Let D; = {s€ C: ¢ > %}, and let M(D;) denote the
space of meromorphic on D; functions equipped with the topology of uniform
convergence on compacta. Moreover, H(D1) is the space of analytic on D; func-
tions with the same topology. H(D1) is a subspace of M(Dy).

On the probability space (Q, B(Q2), my) define the H(D1)-valued random element

[ee)

E(s; l|—< a, oo): r; w exp{ZnimlIf},

and let

Pen(A) = my(w € Q: E(s; IT( @ w)e A), Ae B(H(D)),

be its distribution. Then we have the following result [13].
Theorem 14. Suppose that a < 0 and k# 1, | # 1. Then the probability measure

vi(E(s+ i . )< A). Ac BM(D).

converges weakly to Pen as T — oo.
A joint version of Theorem 14 also can be obtained.
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