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ALGEBRAIC TORI — THIRTY YEARS AFTER

©c 2007 B.Kunyavskĭı1

To my teacher Valentin Evgenyevich
Voskresenskĭı, with gratitude and admiration

This paper is an extended version of my talk given at the Interna-
tional Conference ”Algebra and Number Theory” dedicated to the 80th
anniversary of Prof. V.E.Voskresenskĭı, which was held at the Samara
State University in May 2007. The goal is to give an overview of results
by V.E. Voskresenskĭı on arithmetic and birational properties of algebra-
ic tori which culminated in his monograph [82] published 30 years ago.
We put these results and ideas into somehow broader context and also
to give a brief digest of the relevant activity related to the period after
the English version of the monograph [83] has been published.

1. Rationality and nonrationality problems

A classical problem, going back to Pythagorean triples, of describing the
set of solutions of a given system of polynomial equations by rational functions
in a certain number of parameters (rationality problem) has been an attraction
for many generations. Although a lot of various techniques have been used,
one can notice that after all, to establish rationality, one usually has to ex-
hibit some explicit parameterization such as that obtained by stereographic
projection in the Pythagoras problem. The situation is drastically different if
one wants to establish non-existence of such a parameterization (nonrational-
ity problem): here one usually has to use some known (or even invent some
new) birational invariant allowing one to detect nonrationality by comparing
its value for the object under consideration with some “standard” one known to
be zero; if the computation gives a nonzero value, we are done. Evidently, to
be useful, such an invariant must be (relatively) easily computable. Note that
the above mentioned subdivision to rationality and nonrationality problems is
far from being absolute: given a class of objects, an ultimate goal could be
to introduce some computable birational invariant giving necessary and suffi-
cient conditions for rationality. Such a task may be not so hopeless, and some
examples will be given below.
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In this section, we discuss several rationality and nonrationality problems
related to algebraic tori. Since this is the main object of our consideration, for
the reader’s convenience we shall recall the definition.
Definition 1.1. Let k be a field. An algebraic k-torus T is an algebraic k-group
such that over a (fixed) separable closure k̄ of k it becomes isomorphic to a direct
product of d copies of the multiplicative group:

T × kk̄ � #d
m,k̄
,

wherein d is the dimension of T .
We shall repeatedly use the duality of categories of algebraic k-tori and

finite-dimensional torsion-free �-modules viewed together with the action of
the Galois group g := Gal(k̄/k) which is given by associating to a torus T
its g-module of characters T̂ := Hom(T × k̄,#m,k̄). Together with the fact that
T splits over a finite extension of k (we shall denote by L the smallest of
such extensions and call it the minimal splitting field of T), this allows us to
reduce many problems to considering (conjugacy classes of) finite subgroups
of GL(d,�) corresponding to T̂ .

1.1. Tori of small dimension

There are only two subgroups in GL(1,�): {(1)} and {(1), (−1)}, both cor-
responding to k-rational tori: #m,k and RL/k#m,L/#m,k, respectively (here L is
a separable quadratic extension of k and RL/k stands for the Weil functor of
restriction of scalars).

For d = 2 the situation was unclear until the breakthrough due to Voskre-
senskĭı [77] who proved
Theorem 1.2. All two-dimensional tori are k-rational.

For d = 3 there exist nonrational tori, see [48] for birational classification.
For d = 4 there is no classification, some birational invariants were computed

in [62].
Remark 1.3. The original proof of rationality of the two-dimensional tori in
[77] is based on the classification of finite subgroups in GL(2,�) and case-by-case
analysis. In the monographs [82] and [83] a simplified proof is given, though
using the classification of maximal finite subgroups in GL(2,�). Merkurjev posed
a question about the existence of a classification-free proof. (Note that one of
his recent results on 3-dimensional tori [58] (see Section 3. below) was obtained
without referring to the birational classification given in [48].) During discus-
sions in Samara, Iskovskikh and Prokhorov showed me a proof only relying on
an “easy” part of the classification theorem for rational surfaces.
Remark 1.4. One should also note a recent application of Theorem 1.2 to
the problem of classification of elements of prime order in the Cremona group
Cr(2, ) of birational transformations of plane (see [73, 6.9]). The problem was
recently solved by Dolgachev and Iskovskikh [33]. See the above cited papers for
more details.
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1.2. Invariants arising from resolutions

Starting from the pioneering works of Swan and Voskresenskĭı on Noether’s
problem (see Section 1.4.), it became clear that certain resolutions of the Ga-
lois module T̂ play an important role in understanding birational properties
of T . These ideas were further developed by Lenstra, Endo and Miyata, Col-
liot-Thélène and Sansuc (see [82, 83] for an account of that period); they were
pursued through several decades, and some far-reaching generalizations were ob-
tained in more recent works (see the remarks at the end of this and the next
sections).

For further explanations we need to recall some definitions. Further on “mod-
ule” means a finitely generated �-free g-module.
Definition 1.5. We say that M is a permutation module if it has a �-basis
permuted by g. We say that modules M1 and M2 are similar if there exist permu-
tation modules S 1 and S 2 such that M1⊕S 1 � M2⊕S 2. We denote the similarity
class of M by [M]. We say that M is a coflasque module if H1(h,M) = 0 for all
closed subgroups h of g. We say that M is a flasque module if its dual module
M◦ := Hom(M,�) is coflasque.

The following fact was first established in the case when k is a field of
characteristic zero by Voskresenskĭı [78] by a geometric construction (see below)
and then in [24, 34] in a purely algebraic way (the uniqueness of [F] was
established independently by all above authors).
Theorem 1.6. Any module M admits a resolution of the form

0 → M → S → F → 0, (1.1)

where S is a permutation module and F is a flasque module. The similarity
class [F] is determined uniquely.

We denote [F] by p(M). We call (1.1) the flasque resolution of M. If T is
a k-torus with character module M, the sequence of tori dual to (1.1) is called
the flasque resolution of T .

Seeming strange at the first glance, the notion of flasque module (and the
corresponding flasque torus) turned out to be very useful. Its meaning is clear
from the following theorem due to Voskresenskĭı [82, 4.60]:
Theorem 1.7. If tori T1 and T2 are birationally equivalent, then p(T̂1) = p(T̂2).
Conversely, if p(T̂1) = p(T̂2), then T1 and T2 are stably equivalent, i.e. T1×#d1

m,k

is birationally equivalent to T2 × #d2
m,k for some integers d1, d2.

Theorem 1.7 provides a birational invariant of a torus which can be com-
puted in a purely algebraic way. Moreover, it yields other invariants of co-
homological nature which are even easier to compute. The most important
among them is H1(g, F). One should note that it is well-defined in light of
Shapiro’s lemma (because H1(g, S ) = 0 for any permutation module S ) and, in
view of the inflation-restriction sequence, can be computed at a finite level: if
L/k is the minimal splitting field of T and Γ = Gal(L/k), we have H1(g, F) =
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= H1(Γ, F). The finite abelian group H1(Γ, F) is extremely important for bira-
tional geometry and arithmetic, see below.
Remark 1.8. Recently Colliot-Thélène [18] discovered a beautiful generaliza-
tion of the flasque resolution in a much more general context, namely, for an
arbitrary connected linear algebraic group G.

1.3. Geometric interpretation of the flasque resolution

As mentioned above, the flasque resolution (1.1) was originally constructed
in a geometric way. Namely, assuming k is of characteristic zero, one can use
Hironaka’s resolution of singularities to embed a given k-torus T into a smooth
complete k-variety V as an open subset and consider the exact sequence of
g-modules

0 → T̂ → S → Pic V → 0, (1.2)

where V = V×kk̄, Pic V is the Picard module, and S is a permutation module (it
is generated by the components of the divisors of V whose support is outside
T). With another choice of an embedding T → V ′ we are led to an isomorphism
Pic V⊕S 1 � Pic V

′⊕S 2, so the similarity class [Pic V] is well defined. Voskresenskĭı
established the following property of the Picard module (see [82, 4.48]) which
is of utmost importance for the whole theory:
Theorem 1.9. The module Pic V is flasque.

As mentioned above, this result gave rise to a purely algebraic way of con-
structing the flasque resolutions, as well as other types of resolutions; flasque
tori and torsors under such tori were objects of further thorough investigation
[25, 26].
Remark 1.10. The geometric method of constructing flasque resolutions de-
scribed above can be extended to arbitrary characteristic. This can be done in
the most natural way after the gap in Brylinski’s proof [12] of the existence of
a smooth complete model of any torus have been filled in [20].
Remark 1.11. Recently Theorem 1.9 was extended to the Picard module of
a smooth compactification of an arbitrary connected linear algebraic group [10]
and, even more generally, of a homogeneous space of such a group with connected
geometric stablizer [22]. In each case, there is a reduction to the case of tori
(although that in [22] is involved enough).

1.4. Noether’s problem

One of the most striking applications of the birational invariant described
above is a construction of counter-examples to a problem of E. Noether on
rationality of the field of rational functions invariant under a finite group G of
permutations. Such an example first appeared in a paper by Swan [76] where
tori were not mentioned but a resolution of type (1.1) played a crucial role;
at the same time Voskresenskĭı [78] considered the same resolution to prove
that a certain torus is nonrational. In a later paper [79] he formulated in an
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explicit way that the field of invariants under consideration is isomorphic to
the function field of an algebraic torus. This discovery yielded a series of subse-
quent papers (Endo–Miyata, Lenstra, and Voskresenskĭı himself) which led to
almost complete understanding of the case where the finite group G acting on
the function field is abelian; see [82, Ch. VII] for a detailed account. Moreover,
the idea of realizing some field of invariants as the function field of a certain
torus proved useful in many other problems of the theory of invariants, see
works of Beneish, Hajja, Kang, Lemire, Lorenz, Saltman, and others; an exten-
sive bibliography can be found in the monograph [56], see [43] and references
therein for some more recent development; note also an alternative approach
to Noether’s problem based on cohomological invariants (Serre, in [35]).

Note a significant difference in the proofs of nonrationality for the cases
G = �47 (the smallest counter-example for a cyclic group of prime order) and
G = �8 (the smallest counter-example for an arbitrary cyclic group). If G is a
cyclic group of order q = pn, and k is a field of characteristic different from p,
the corresponding k-torus splits over the cyclotomic extension k(ζq). If p > 2,
the extension k(ζq)/k is cyclic. According to [34], if a k-torus T splits over
an extension L such that all Sylow subgroups of Gal(L/k) are cyclic, then the
Γ-module F in the flasque resolution for T is a direct summand of a permuta-
tion module. Thus to prove that it is not a permutation module, one has to
use subtle arguments. If p = 2 and n � 3, the Galois group Γ of k(ζq)/k may
be noncyclic and contain a subgroup Γ′ such that H1(Γ′, F) � � 0 which guar-
antees that F is not a permutation module and hence T is not rational. This
important observation was made in [80]. Another remark should be done here:
for the tori appearing in Noether’s problem over a field k with cyclic G such
that char(k) is prime to the exponent of G, triviality of the similarity class [F]
is necessary and sufficient condition for rationality of T (and hence of the cor-
responding field of invariants). This is an important instance of the following
phenomenon: in a certain class of tori any stably rational torus is rational. The
question whether this principle holds in general is known as Zariski’s problem
for tori and is left out of the scope of the present survey.

The group H1(Γ, Pic X), where X is a smooth compactification of a k-torus T ,
admits another interpretation: it is isomorphic to Br X/Br k, where Br X stands
for the Brauer–Grothendieck group of X. This birational invariant, later named
the unramified Brauer group, played an important role in various problems, as
well as its generalization for higher unramified cohomology (see [15, 69] for de-
tails). Let us only note that the main idea here is to avoid explicit construction
of a smooth compactification of an affine variety V under consideration, trying
to express Br X/Br k in terms of V itself. In the toric case this corresponds to
the formula [26]

Br X/Br k = ker[H2(Γ, T̂ ) →
∏

C

H2(C, T̂ )], (1.3)

where the product is taken over all cyclic subgroups of Γ. Formulas of similar
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flavour were obtained for the cases where V = G, an arbitrary connected linear
algebraic group [9, 21], and V = G/H, a homogeneous space of a simply con-
nected group G with connected stabilizer H [22]; the latter formula was used in
[23] for proving nonrationality of the field extensions of the form k(V)/k(V)G,
where k is an algebraically closed field of characteristic zero, G is a simple
k-group of any type except for An, Cn, G2, and V is either the representation
of G on itself by conjugation or the adjoint representation on its Lie algebra.

It is also interesting to note that the same invariant, the unramified Brauer
group of the quotient space V/G, where G is a finite group and V its faithful
complex representation, was used by Saltman [68] to produce the first coun-
ter-example to Noether’s problem over �. In the same spirit as in formula (1.3)
above, this invariant can be expressed solely in terms of G: it equals

B0(G) := ker[H2(G, /�) →
∏

A

H2(A, /�)], (1.4)

where the product is taken over all abelian subgroups of G (and, in fact, may
be taken over all bicyclic subgroups of G) [5]. This explicit formula yielded
many new counter-examples (all arising for nilpotent groups G, particularly
from p-groups of nilpotency class 2). The reader interested in historical per-
spective and geometric context is referred to [7, 27, 74]. We only mention here
some recent work [8, 49] showing that such counter-examples cannot occur if
G is a simple group; this confirms a conjecture stated in [6].

1.5. Generic tori

Having at our disposal examples of tori with “good” and “bad” birational
properties, it is natural to ask what type of behaviour is typical. Questions
of such “nonbinary” type, which do not admit an answer of the form “yes-no”,
have been considered by many mathematicians, from Poincaré to Arnold, as
the most interesting ones. In the toric context, the starting point was the fa-
mous Chevalley–Grothendieck theorem stating that the variety of maximal tori
in a connected linear algebraic group G is rational. If G is defined over an
algebraically closed field, its underlying variety is rational. However, if k is not
algebraically closed, k-rationality (or nonrationality) of G is a hard problem.
The Chevalley–Grothendieck theorem gives a motivation for studying generic
tori in G: if this torus is rational, it gives the k-rationality of G. The notion of
generic torus can be expressed in Galois-theoretic terms: these are tori whose
minimal splitting field has “maximal possible” Galois group Γ (i.e. Γ lies be-
tween W(R) and Aut(R) where R stands for the root system of G). This result,
going back to E. Cartan, was proved in [81]. In this way, Voskresenskĭı and
Klyachko [84] proved the rationality of all adjoint groups of type A2n. The
rationality was earlier known for the adjoint groups of type Bn, the simply
connected groups of type Cn, the inner forms of the adjoint groups of type
An, and (after Theorem 1.2) for all groups of rank at most two. It turned out
that for the adjoint and simply connected groups of all remaining types the



204 B.Kunyavskĭı

generic torus is not even stably rational [29]; in most cases this was proved by
computing the birational invariant H1(Γ′, F) for certain subgroups Γ′ ⊂ Γ. In
the case of inner forms of simply connected groups of type An, corresponding
to generic norm one tori, this confirms a conjecture by Le Bruyn [53] (indepen-
dently proved later in [54]). The above theorem was extended to groups which
are neither simply connected nor adjoint and heavily used in the classification
of linear algebraic groups admitting a rational parameterization of Cayley type
[55].

The above mentioned results may give an impression that except for certain
types of groups the behaviour of generic tori is “bad” from birational point
of view. However, there is also a positive result: if T is a generic torus in G,
then H1(Γ, F) = 0, This was first proved in [85] for generic tori in the classical
simply connected (type An) and adjoint groups, and in [46] in the general case.
(An independent proof for the simply connected case was communicated to the
author by M. Borovoi.) This result has several number-theoretic applications,
see Section 2.
Remark 1.12. Yet another approach to the notion of generic torus was de-
veloped in [41] where the author, with an eye towards arithmetic applications,
considered maximal tori in semisimple simply connected groups arising as the
centralizers of regular semisimple stable conjugacy classes.

2. Relationship to arithmetic

2.1. Global fields: Hasse principle and weak approximation

According to a general principle formulated in [57], the influence of (bira-
tional) geometry of a variety on its arithmetic (diophantine) properties may
often be revealed via some algebraic (Galois-cohomological) invariants. In the
toric case such a relationship was obtained by Voskresenskĭı and formulated
as the exact sequence (see [82, 6.38])

0 → A(T ) → H1(k, Pic V)˜→ Sha(T ) → 0, (2.1)

where k is a number field, T is a k-torus, V is a smooth compactification of
T , A(T ) is the defect of weak approximation, Sha(T ) is the Shafarevich – Tate
group, and ˜ stands for the Pontrjagin duality of abelian groups. The cohomo-
logical invariant in the middle, being a purely algebraic object, governs arith-
metic properties of T .

On specializing T to be the norm one torus corresponding to a finite field
extension K/k, we get a convenient algebraic condition sufficient for the Hasse
norm principle to hold for K/k. In particular, together with results described
in Section 1.5., this shows that the Hasse norm principle holds “generically”,
i.e. for any field extension K/k of degree n such that the Galois group of the
normal closure is the symmetric group S n [85]. (Another proof was indepen-
dently found for n > 7 by Yu. A. Drakokhrust.) Another application was found
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in [51]: combining the above mentioned theorem of Klyachko with the Cheval-
ley–Grothendieck theorem and Hilbert’s irreducibility theorem, one can produce
a uniform proof of weak approximation property for all simply connected, ad-
joint and absolutely almost simple groups. (Another uniform proof was found
by Harari [42] as a consequence of a stronger result on the uniqueness of the
Brauer–Manin obstruction, see the next paragraph.) Yet another interesting
application of sequence (2.1) refers to counting points of bounded height on
smooth compactifications of tori [2, 3]: the constant appearing in the asymp-
totic formula of Peyre [60] must be corrected by a factor equal to the order
of H1(k, Pic V) and arising on the proof as the product of the orders of A(T )
and Sha(T ) (I thank J.-L. Colliot-Thélène for this remark).

The sequence (2.1) was extended by Sansuc [70] to the case of arbitrary lin-
ear algebraic groups. On identifying the invariant in the middle with Br V/Br k,
as in Section 1.4., one can put this result into more general context of the
so-called Brauer–Manin obstruction to the Hasse principle and weak approxi-
mation (which is thus the only one for principal homogeneous spaces of linear
algebraic groups). This research, started in [57], gave many impressive results.
It is beyond the scope of the present survey.
Remark 2.1. Other types of approximation properties for tori have been con-
sidered in [28] (weaker than weak approximation), [63, 64] (strong approxima-
tion with respect to certain infinite sets of primes with infinite complements —
so-called generalized arithmetic progressions). In the latter paper generic tori
described above also played an important role. They were also used in [14] in
a quite different arithmetic context.

2.2. Arithmetic of tori over more general fields

Approximation properties and local-global principles were studied for some
function fields. In [1] the exact sequence (2.1) has been extended to the case
where the ground field k is pseudoglobal, i.e. k is a function field in one vari-
able whose field of constants κ is pseudofinite (this means that κ has exactly
one extension of degree n for every n and every absolutely irreducible affine
κ-variety has a κ-rational point). In [16] weak approximation and the Hasse
principle were established for any torus defined over �(X) where X is an irre-
ducible real curve. This allows one to establish these properties for arbitrary
groups over such fields, and, more generally, over the fields of virtual cohomo-
logical dimension 1 [71]. The same properties for tori defined over some geo-
metric fields of dimension 2 (such as a function field in two variables over an
algebraically closed field of characteristic zero, or the fraction field of a two-di-
mensional excellent, Henselian, local domain with algebraically closed residue
field, or the field of Laurent series in one variable over a field of characteris-
tic zero and cohomological dimension one) were considered in [19]. Here one
can note an interesting phenomenon: there are counter-examples to weak ap-
proximation but no counter-example to the Hasse principle is known. One can
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ask whether there exists some Galois-cohomological invariant of tori defined
over more general fields whose vanishing would guarantee weak approximation
property for the torus under consideration. Apart from the geometric fields
considered in [19], another interesting case could be k =  p(X), where X is
an irreducible  p-curve; here some useful cohomological machinery has been
developed in [72].

2.3. Integral models and class numbers of tori

The theory of integral models of tori, started by Raynaud who constructed
an analogue of the Néron smooth model [11], has been extensively studied
during the past years, and some interesting applications were found using both
Néron–Raynaud models and Voskresenskĭı’s “standard” models. The interested
reader is referred to the bibliography in [86]. Some more recent works include
standard integral models of toric varieties [50] and formal models for some
classes of tori [30].

Main results on class numbers of algebraic tori are summarized in [83].
One can only add that the toric analogue of Dirichlet’s class number formula
established in [75] suggests that a toric analogue of the Brauer–Siegel theorem
may also exist. A conjectural formula of the Brauer–Siegel type for constant
tori defined over a global function field can be found in a recent paper [52].

3. R-equivalence and zero-cycles

R-equivalence on the set of rational points of an algebraic variety intro-
duced in [57] turned out to be an extremely powerful birational invariant. Its
study in the context of algebraic groups, initiated in [24], yielded many strik-
ing achievements. We shall only recall here that the first example of a simply
connected group whose underlying variety is not k-rational is a consequence
of an isomorphism, established by Voskresenskĭı, between G(k)/R, where G =
= S L(1,D), the group of norm 1 elements in a division algebra over k, with the
reduced Whitehead group S K1(D); as the latter group may be nonzero because
of a theorem by Platonov [61], this gives the needed nonrationality of G. This
breakthrough gave rise to dozens of papers on the topic certainly deserving a
separate survey. For the lack of such, the interested reader is referred to [36.
Sections 24–33; 37; 83. Ch. 6].

As to R-equivalence on tori, the most intriguing question concerns relation-
ship between T (k)/R and the group A0(X) of classes of 0-cycles of degree 0 on
a smooth compactification X of T . In a recent paper [58] Merkurjev proved
that these two abelian groups are isomorphic if T is of dimension 3 (for tori
of dimension at most 2 both groups are zero because of their birational in-
variance and Theorem 1.2) For such tori he also obtained a beautiful formula
expressing T (k)/R in “intrinsic” terms, which does not require constructing X
as above nor a flasque resolution of T̂ as in [24]: T (k)/R � H1(k, T◦)/R, where
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T ◦ denotes the dual torus (i.e. T̂ ◦ = Hom(T̂ ,�)). (In the general case, it is
not even known whether the map X(k)/R → A0(X) is surjective, see [17, §4] for
more details.) As a consequence, Merkurjev obtained an explicit formula for
the Chow group CH0(T ) of classes of 0-cycles on a torus T of dimension at
most 3: CH0(T ) � T (k)/R ⊕ �iT where iT denotes the greatest common divisor
of the degrees of all field extensions L/k such that the torus TL is isotropic.
The proofs, among other things, use earlier results [45], [59] on the K-theory
of toric varieties. As mentioned above, they do not rely on the classification
of 3-dimensional tori.

To conclude this section, one can also add the same references [1, 19] as
in Section 2.2. for R-equivalence on tori over more general fields.

4. Applications in information theory

4.1. Primality testing

One should mention here several recent papers [40, 44] trying to interpret
in toric terms some known methods for checking whether a given integer n is
a prime. In fact, this approach goes back to a much older paper [13] where
the authors noticed symmetries in the sequences of Lucas type used in such
tests (though algebraic tori do not explicitly show up in [13]).

4.2. Public-key cryptography

A new cryptosystem based on the discrete logarithm problem in the group
of rational points of an algebraic torus T defined over a finite field was recently
invented by Rubin and Silverberg [65, 66, 67]. Since this cryptosystem possesses
a compression property, i.e. allows one to use less memory at the same security
level, it drew serious attention of applied cryptographers and yielded a series
of papers devoted to implementation issues [31, 32, 39, 47] (in the latter paper
another interesting approach is suggested based on representing a given torus
as a quotient of the generalized jacobian of a singular hyperelliptic curve). In
[38] the authors propose to use a similar idea of compression for using tori in
an even more recent cryptographic protocol (so-called pairing-based cryptogra-
phy). It is interesting to note that the efficiency (compression factor) of the
above mentioned cryptosystems heavily depends on rationality of tori under
consideration (more precisely, on an explicit rational parameterization of the
underlying variety). As the tori used by Rubin and Silverberg are known to
be stably rational, the seemingly abstract question on rationality of a given
stably rational torus is moving to the area of applied mathematics. The first
challenging problem here is to obtain an explicit rational parameterization of
the 8-dimensional torus T30, defined over a finite field k and splitting over its
cyclic extension L of degree 30, whose character module T̂30 is isomorphic to
�[ζ30], where �[ζ30] stands for a primitive 30th root of unity. (Here is an al-



208 B.Kunyavskĭı

ternative description of T30: it is a maximal torus in E8 such that Gal(L/k)
acts on T̂30 as the Coxeter element of W(E8); this can be checked by a direct
computation or using [4].)

This is a particular case of a problem posed by Voskresenskĭı [82, Prob-
lem5.12] 30 years ago. Let us hope that we will not have to wait another 30
years for answering this question on a degree 30 extension.
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groupe fini d’automorphismes / J.-L. Brylinski // C. R. Acad. Sci. Paris
Sér. A-B. – 1979. – 288. – P. 137–139.

[13] Chudnovsky, D. Sequences of numbers generated by addition in for-
mal groups and new primality and factorization tests / D. Chudnovsky,
G. Chudnovsky // Adv. Appl. Math. – 1986. – 7. – P. 385–434.
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J.-L. Colliot-Thélène // Invent. Math. – 2005. – 159. – P. 589–606.

[18] Colliot-Thélène, J.-L. Résolutions flasques des groupes linéaires connexes /
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O. Demchenko, A. Gurevich, X. Xarles. – Preprint arXiv:0704.2578.

[31] Practical cryptography in high dimensional tori / M. van Dijk [et al] //
“Advances in Cryptology — EUROCRYPT 2005 (R. Cramer, ed.)”, Lecture
Notes Comp. Sci. – 2005. – 3494. – P. 234–250.

[32] M. van Dijk, Asymptotically optimal communication for torus-based cryp-
tography / M. van Dijk, D. P. Woodruff // “Advances in Cryptology —
CRYPTO 2004 (M. K. Franklin, ed.)”, Lecture Notes Comp. Sci. – 2004. –
3152. – P. 157–178.

[33] Dolgachev, I.V. On elements of prime order in Cr2( ) / I.V. Dolgachev,
V.A. Iskovskikh. – preprint arxiv:0707.4305.

[34] Endo, S. On a classification of the function fields of algebraic tori / S. En-
do, T. Miyata // Nagoya Math. J. – 1975. – 56. – P. 85–104; ibid. – 1980. –
79. – P. 187–190.

[35] Garibaldi, S. Cohomological Invariants in Galois Cohomology / S. Garibal-
di, A. Merkurjev, J-P. Serre // Univ. Lecture Ser. 28, Amer. Math. Soc.,
Providence, RI, 2003.

[36] Gille, P. Rationality properties of linear algebraic groups and Galois
cohomology / P. Gille // lecture notes available at http://www.dma.
ens.fr/˜gille

[37] Gille, P. Le problème de Kneser–Tits / P. Gille. – preprint, 2007.
[38] Granger, R. On small characteristic algebraic tori in pairing-based cryptog-

raphy / R. Granger, D. Page, M. Stam // London Math. Soc. J. Comput.
Math. – 2006. – 9. – P. 64–85.

[39] Granger, R. On the discrete logarithm problem on algebraic tori /
R. Granger, F. Vercauteren // “Advances in Cryptology — CRYPTO 2005
(V. Shoup, ed.)”, Lecture Notes Comp. Sci. 3621. – 2005. – P. 66–85.

[40] Gross, B. An elliptic curve test for Mersenne primes / B. Gross // J. Num-
ber Theory. – 2005. – 110. – P. 114–119.



Algebraic tori — thirty years after 211

[41] Gross, B. On the centralizer of a regular, semi-simple, stable conjugacy
class / B. Gross // Represent. Theory. – 2005. – 9. – P. 287–296.
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