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ON L-FUNCTION OF ELLIPTIC CURVES

© 2007 V. Garbaliauskienė1

In the paper a survey on universality theorems for L-functions
of elliptic curves over the field of rational numbers as well as their
derivatives is presented.

Introduction

Elliptic curves are one of the most important objects in algebraic geom-
etry and, in general, in mathematics. The theory of elliptic curves is rather
complicated and wattled by many conjectures. On the other hand, the ellip-
tic curves have many practical applications, for example, to cryptography, to
factoring positive integers and primality testing. To study the properties of
elliptic curves H.Hasse introduced L-functions attached to these curves.

Let E be an elliptic curve over the field of rational numbers  defined by
the Weierstrass equation

y2 = x3 + ax + b a, b ∈ �.
We assume that the cubic x3 + ax+ b has not a multiple root. Denote by ∆ =
= −16(4a3 + 27b2) the discriminant of the curve E, and suppose that ∆ � 0.
Then the roots of the cubic x3+ax+b are distinct, and the curve E is non-sin-
gular.

For each prime p, denote by ν(p) the number of solutions of the congruence

y2 ≡ x3 + ax + b (modp),

and let λ(p) = p−ν(p). Let s = σ+it be a complex variable. Then the L-function
of the elliptic curve E is the Euler product

LE(s) =
∏
p|∆

(
1 − λ(p)

ps

)−1∏
p�∆

(
1 − λ(p)

ps +
1

p2s−1

)−1

.

In view of the Hasse estimate

|λ(p)| < 2
√

p,
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On L-function of elliptic curves 177

the infinite product for LE(s) converges absolutely and uniformly on compact
subsets of the half-plane Da =

{
s ∈ � : σ > 3

2

}
, and defines there an analytic

function with no zeros. The function LE(s) also can be written in the form of
the Dirichlet series

LE(s) =
∞∑

m=1

λ(m)
ms
,

where
λ(m) =

∏
pα||m

λ(pα),

and pα ‖ m means that pα | m but pα+1 � m, and the series also converges
absolutely in Da.

1. Analytic properties of the function LE(s)

Analytic continuation of the function LE(s) and its universality is closely
related to those of L–function of certain modular forms. Therefore, we start
with some facts from the theory of modular forms.

Denote by S L(2,�) the full modular group, i.e.

S L(2,�) =

{(
a b
c d

)
: a, b, c, d ∈ �, ad − bc = 1

}
.

Furthermore, for a positive integer q, define

Γ0(q) =

{(
a b
c d

)
∈ S L(2,�) : c ≡ 0 (mod q)

}
.

Then Γ0(q) is a subgroup of S L(2,�), and it is called Hecke’s or congruence
subgroup mod q.

Now let U = {z ∈ � : z = x + iy, i =
√−1, y > 0} be the upper half-plane

together with ∞. The rational numbers and ∞ are called cusps. Let F(s) be a

holomorphic on U function, and suppose that, for all
(

a b
c d

)
∈ S L(2,�), the

functional equation

F

(
az + b
cz + d

)
= (cz + d)κF(z) (1)

with some even positive integer κ is satisfied. Then

F(z) =
∞∑

m=−∞
c(m)e2πimz

is the Fourier series expansion of F(z) at infinity. The function F(s) is called
holomorphic at infinity if c(m) = 0 for m < 0, and vanishing at infinity if c(m) =
= 0 for m � 0. Moreover, F(z) is called holomorphic and vanishing at other
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cusps if the function

(cz + d)−κF
(
az + b
cz + d

)

is holomorphic and vanishing at infinity for all
(

a b
c d

)
∈ S L(2,�) respectively.

If F(z) is holomorphic at the cusps, then it is called a modular form of weight
κ. In this case, the Fourier series expansion at infinity of F(z) is

F(z) =
∞∑

m=0

c(m)e2πimz. (2)

If the modular form F(z) of weight κ vanishes at the cusps, then it is called
a cusp form of weight κ, and

F(z) =
∞∑

m=1

c(m)e2πimz

is its Fourier series expansion at infinity. If equation (1) is satisfied for all(
a b
c d

)
∈ Γ0(q), then the cusp form F(z) is called a cusp form of weight κ

and level q.
The Ramanujan cusp form

∆(z) = e2πimz
∞∏

m=1

(
1 − e2πimz

)24
=

∞∑
m=1

τ(m)e2πimz

is a classical example of cusp forms for S L(2,�). Its weight is 12, and τ(m) is
called the Ramanujan function. The function τ(m) is multiplicative.

Denote by S κ (Γ0(q)) the space of all cusp forms of weight κ and level q. An
element F of S κ (Γ0(q)) is called a Hecke’s eigenform if F is an eigenfunction
for all Hecke operators

(T (m) f )(z) = mκ−1
∑
0<d|m
ad=m

d−κ f

(
az + b

d

)
.

If q1 | q, then an element F of S κ (Γ0(q1)) can be also an element of S κ (Γ0(q)).
An element of S κ (Γ0(q)) is called a newform if it is a Hecke eigenform and if
it is not a cusp form of level less than q. Let F(s) be a cusp form of weight
κ with the Fourier series expansion (2). Then the function

L(s, F) =
∞∑

m=1

c(m)
ms

is called the L-function of the cusp form F(z). The series for L(s, F) converges
absolutely for σ > κ+1

2 , moreover, L(s, F) is analytically continuable to an entire
function.

Now we will formulate the principal properties of the function LE(s). For
long time, these properties were known as the conjectures.
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Conjecture A (H. Hasse). The function LE(s) is analytically continuable
to an entire function and satisfies the functional equation

( √
q

2π

)s
Γ(s)LE(s) = η

( √
q

2π

)2−s

Γ(2 − s)LE(2 − s),

where q is a positive integer composed of prime factors of the discriminant
∆, η = ±1 is the root number, and Γ(s), as usual, denotes the Euler gamma-
function.

Conjecture B (Shimura–Taniyama–Weil). The Fourier series

F(z) =
∞∑

m=1

λ(m)e2πimz

is a newform of weight 2 for some Γ0(q).

Now Conjectures A and B are proved. First they were proved by R. Taylor
and A. Wiles [15] for semistable elliptic curves, and this succeeded the proof
of the last Fermat problem. We recall that in the semistable case there is no
additive reduction but only multiplicative one is.

Recently, Conjectures A and B were proved completely by C. Breuil, B.
Conrad, F. Diamond and R. Taylor [2]. Therefore, analytic properties of the
function LE(s) coincide with those of L-functions of newforms of weight 2.

2. Universality theorem of continuous type

The universality is a very interesting property of zeta and L-functions.
J. Marcinkiewicz was the first who in 1935 used the name of the universality.

The first universality theorem for the Riemann zeta-function ζ(s) defined,
for σ > 1, by

ζ(s) =
∞∑

m=1

1
ms ,

and by analytic continuation elsewhere, was discovered by S.M. Voronin in 1975
[13]. Let 0 < r < 1

4 , and let f (s) be a continuous non-vanishing function on the
disc |s| � r which is analytic in the interior of this disc. Then S. M. Voronin
proved that, for every ε > 0, there exists a real number τ = τ(ε) such that

max
|s|�r

∣∣∣∣∣∣ζ
(
s +

3
4
+ iτ

)
− f (s)

∣∣∣∣∣∣ < ε.
Later, S.M. Gonek, A. Reich, B. Bagchi, A. Laurinčikas, K. Matsumoto, R. Ga-
runkštis, J. Steuding, W. Schwarz, H. Mishou, R. Kačinskaitė, R. Šleževičienė,
J. Ignatavičiūtė, J. Genys, H. Nagoshi and others generalized and improved
the Voronin theorem. It turns out that a given analytic function f (s) can be
approximated by translations of ζ(s) uniformly on more general sets than a
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disc. Denote by meas{A} the Lebesgue measure of a measurable set A ⊂ �,
and let, for T > 0,

νT (...) =
1
T

meas {τ ∈ [0, T ] : ...} ,
where in place of dots a condition satisfied by τ is to be written. Then the last
version of the Voronin theorem is contained in the following statement, see, for
example, [11]. Let K be a compact subset of the strip D = {s ∈ � : 1

2 < σ < 1}
with connected complement. Let f (s) be a continuous and non-vanishing on
K function which is analytic in the interior of K. Then, for every ε > 0,

lim inf
T→∞ νT

(
sup
s∈K

|ζ(s + iτ) − f (s)| < ε
)
> 0. (3)

The latter theorem shows that there exist many translations ζ(s+ iτ) which
approximate a given analytic function f (s): the set of τ in (3) has a positive
lower density.

The majority of classical zeta and L–functions are universal in the Voronin
sense. The Linnik–Ibragimov conjecture says that all functions in some half-
plane given by the Dirichlet series, analytically continuable to the left of the
absolute convergence half-plane and satisfying some natural growth conditions
are universal in the Voronin sense. All recent results on the universality of the
Dirichlet series support that conjecture.

The aim of this paper is to give a survey on the universality of L–functions
of elliptic curves. The universality of L–functions of newforms has been proved
in [11]. From this the universality of LE(s) follows. Let D = {s ∈ � : 1 < σ < 3

2 }.

Theorem 1. Suppose that E is a non-singular elliptic curve over the field
of rational numbers. Let K be a compact subset of the strip D with connected
complement, and let f (s) be a continuous non-vanishing function on K which
is analytic in the interior of K. Then, for every ε > 0,

lim inf
T→∞ νT

(
sup
s∈K

|LE(s + iτ) − f (s)| < ε
)
> 0.

3. Generalizations of Theorem 1

Theorem 1 can be generalized in the two directions: for powers of LE(s)
as well as a weighted universality theorem for LE(s) can be obtained.

Theorem 2. Suppose that E is a non-singular elliptic curve over the field
of rational numbers. Let K be a compact subset of the strip D with connected
complement, and let f (s) be a continuous non-vanishing function on K which
is analytic in the interior of K. Then, for every ε > 0 and k ∈ �,

lim inf
T→∞ νT

(
sup
s∈K

|Lk
E(s + iτ) − f (s)| < ε

)
> 0.
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Proof of Theorem 2 is given in [7].

Now let T0 be a fixed positive number, and let w(t) be a positive function
of bounded variation on [T0,∞). Define

U = U(T,w) =

T∫
T0

w(t)dt

and suppose that
lim

T→∞U(T,w) = +∞. (4)

For the proof of Theorems 1 and 2, limit theorems in the sense of weak
convergence of probability measures in the space of analytic functions for the
considered functions are applied. On the other hand, the identification of the
limit measures in these theorems is based on the ergodic theory, more precisely,
on the Birkhoff—Khinchine theorem. A weighted analogue the latter theorem is
not known. Therefore, to obtain a weighed universality theorem for the function
LE(s) we need a certain additional condition.

Denote by Eη the expectation of the random variable η. Let X(τ,ω) be an
ergodic process, E|X(τ,ω)| < ∞, with sample paths almost surely integrable in
the Riemann sense over every finite interval. Suppose that

1
U

T∫
T0

w(τ)X(t + τ,ω)dτ = EX(0,ω) + o (1 + |t|)δ (5)

almost surely for all t ∈ � with some δ > 0 as T → ∞. Let IA denote the
indicator function of the set A.

Theorem 3. Let the function w(t) satisfy conditions (4) and (5), and let
K and f (s) be the same as in Theorem 1. Then, for every ε > 0,

lim inf
T→∞

1
U

T∫
T0

w(τ)I{τ:sup
s∈K

|LE(s+iτ)− f (s)|<ε}dτ > 0.

Proof of Theorem 3 is given in [3].

The universality of the derivative L′E(s) is contained in the following
statement.

Theorem 4 [8]. Let K be a compact subset of the strip D with connected
complement, and let f (s) be a continuous function on K which is analytic in
the interior of K. Then, for every ε > 0,

lim inf
T→∞ νT

(
sup
s∈K

|L′E(s + iτ) − f (s)| < ε
)
> 0.
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Note that, differently from Theorems 4, the function f (s) can be vanishing
on K.

The universality of functions implies their functional independence. Note
that the problem of independence of functions comes back to D.Hilbert.
S.M.Voronin [14] obtained the functional independence of ζ(s). Let Fl, l =
= 0, 1, ..., n, be continuous functions, and let the equality

n∑
l=0

slFl

(
ζ(s), ζ′(s), ..., ζ(N−1)(s)

)
= 0

be valid identically for s. Then Fl ≡ 0 for l = 0, 1, ..., n.
Functions Lk

E(s) are functional independent too.

Theorem 5. Let h0, ..., hM be continuous functions on �n. If

M∑
m=0

smhm

(
Lk

E(s), kLk−1
E (s)L′E(s), ..., (LE(s))(n−1)

)
≡ 0,

then hm ≡ 0 for m = 0, 1, ...,M.

Proof of Theorem 5 is given in [7].

4. Discrete universality

All stated above universality theorems are of continuous type: in them trans-
lations the imaginary part of the complex variable varies continuously in the
interval [0, T ]. Also, a discrete version of universality theorems exists. In this
case, the imaginary part of the complex variable in translations takes values
from some arithmetical progression. Let, for N ∈ �,

µN(...) =
1

N + 1
� {0 � m � N : ...} ,

where in place of dots a condition satisfied by m is to be written, and let
h > 0 be a fixed number.

The discrete universality of the Riemann zeta-function has been considered
by S.M.Voronin [14] and B.Bagchi [1]. R.Kačinskaitė obtained [10] the discrete
universality for the Matsumoto zeta-function [12] with special h and under some
additional conditions. J. Ignatavičiūtė proved [9] a discrete universality theorem
for the Lerch zeta-function

L(λ,α, s) =
∞∑

m=0

e2πiλm

(m + α)s , σ > 1,

with transcendental parameter α, and h such that exp
{

2π
h

}
is rational. In

general, results on the discrete universality for functions given by the Dirichlet



On L-function of elliptic curves 183

series are not numerous. For the function LE(s) the following statement is
valid [6].

Theorem 6. Suppose that exp
{

2πk
h

}
is an irrational number for all k ∈

∈ � \ {0}. Let K and f (s) be the same as in Theorem 1. Then, for every ε > 0,

lim inf
T→∞ µN

(
sup
s∈K

|LE(s + imh) − f (s)| < ε
)
> 0.

Theorem 6 shows that the set {m : m = 0, 1, ...} such that LE(s + imh) ap-
proximates a given analytic function is sufficiently rich: it has a positive lower
density. Since by the Hermite–Lindemann theorem ea with an algebraic num-
ber a � 0, is irrational, Theorem 6 holds, for example, with h = 2π. On the
other hand, Theorem 6 as well as continuous universality Theorems 1–4 are
non-effective in the sense that there are not known at least one m or τ having
approximation properties.

The case of h when exp{2πk
h } is rational for some k � 0 is more complicated

than that of Theorem 6. It turns out that the assertion of Theorem 6 remains
valid also in this case, however its proof has some essential differences.

The proof of Theorem 6 is based on a limit theorem in the space H(D)
of analytic on D functions for the function LE(s). Denote by γ the unit circle
on the complex plane �, and define the infinite-dimensional torus

Ω =
∏

p

γp,

where γp = γ for each prime p. With the product topology and pointwise mul-
tiplication Ω is a compact topological Abelian group. Therefore, on (Ω,B(Ω)),
where B(S ) denotes the class of Borel sets of the space S , the probability Haar
measure mH can be defined. This gives a probability space (Ω,B(Ω),mhH). Let
ω(p) be the projection of ω ∈ Ω to the coordinate space γp. On the probability
space (Ω,B(Ω),mH) define an H(D)-valued random element LE(s,ω) by

LE(s,ω) =
∏
p|∆

(
1 − λ(p)ω(p)

ps

)−1∏
p�∆

(
1 − λ(p)ω(p)

ps +
ω2(p)

p2s−1

)−1

,

and denote be PLE its distribution. Then the proof of Theorem 6 uses the
following probabilistic limit theorem. The probability measure

µN(LE(s + imh) ∈ A), A ∈ B(H(D)),

converges weakly to the PLE as N →∞.

If exp
{

2πk
h

}
is rational for some integers k � 0, then a modification of the

latter theorem is used. Let

k0 = min

{
k ∈ � : exp

{
2πk
h

}
is rational

}
.
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If exp
{

2πk
h

}
is rational, then k is a multiple of k0. Denote

exp

{
2πk0

h

}
=

m0

n0
, m0, n0 ∈ �, (m0, n0) = 1,

and define
Ωh = {ω ∈ Ω : ω(m0) = ω(n0)},

where
ω(m) =

∏
pα||m

ωα(p).

Ωh is a closed subgroup of Ω, therefore it is also a compact topological group.
Thus we obtain a probability space (Ωh,B(Ωh),mhH), where mhH is the proba-
bility Haar measure on (Ωh,B(Ωh)). Now on the latter probability space define
an H(D)-valued random element LE(s,ωh) by

LE(s,ωh) =
∏
p|∆

(
1 − λ(p)ωh(p)

ps

)−1∏
p�∆

⎛⎜⎜⎜⎜⎜⎝1 − λ(p)ωh(p)
ps +

ω2
h(p)

p2s−1

⎞⎟⎟⎟⎟⎟⎠
−1

.

Then it is proved [5] that if exp
{

2πk
h

}
is rational for some k � 0, then the

probability measure

µN (LE(s + imh) ∈ A) , A ∈ B(H(D)),

converges weakly to the distribution of the random element LE(s,ωh) as
N →∞. From this theorem an analogue of Theorem 6 follows.

Theorem 7. Suppose that exp
{

2πk
h

}
is rational for some k � 0. Then the

assertion of Theorem 6 is true.

Proof of Theorem 7 is given in [5].

5. A weighted discrete universality theorem

We present a very simple discrete universality theorem with weight for the
function LE(s). Let w(x) be a non-negative function on [0,∞). Suppose that

U = U(N,w) =
N∑

m=0

w(m) → ∞

as N →∞. We prove the following statement. Let, for brevity,

vN(...) =
1
U

N∑
m=0
...

w(m),

where in place of dots a condition satisfied by m is to be written.
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Theorem 8. Suppose that w(x) is a continuous non-increasing function on
[0,∞), and that exp

{
2πk
h

}
is an irrational number for all k ∈ � \ {0}. Let K be a

compact subset of the strip D = {s ∈ � : 1
2 < σ < 1} with connected complement.

Let f (s) be a continuous and non-vanishing on K function which is analytic in
the interior of K. Then, for every ε > 0,

lim inf
N→∞ vN

(
sup
s∈K

|LE(s + imh) − f (s)| < ε
)
> 0.

The proof of Theorem 8 [4] is based on a discrete limit theorem, in this
case with weight, in the sense of weak convergence of probability measures in
the space of analytic functions.
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[11] Laurinčikas, A. Limit Theorems for the Riemann Zeta-Function / A. Lau-
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