УДК 512.7

O (p, n)-ПРОБЛЕМЕ

© 2007 А.В. Гришин, Л.М. Цыбуля¹

В данной работе изучается строение унитарно замкнутого T-пространства W_n , порожденного всеми n-словами в относительно свободной алгебре $F^{(3)} = k\langle x_1, \ldots, x_i, \ldots \rangle/I$, где k — бесконечное поле характеристики p > 0, а I - T-идеал, порожденный многочленом $[[x_1, x_2], x_3]$. В W_n указана бесконечная неприводимая система порождающих. В связи с этим рассмотрены бесконечные серии бесконечно базируемых T-подпространств в W_n . Выявлена особенность случая p = 2. Кроме того, исследуется мультипликативная структура T-пространства W_n .

Введение

Понятие T-пространства, введенное одним из авторов настоящей работы около 20 лет назад, уже прочно вошло в обиход современной комбинаторной алгебры и теории РІ-колец. С его помощью был решен ряд достаточно долго остававшихся открытыми проблем. Это в первую очередь такие проблемы конечной базируемости, как проблема Мальцева, проблема Шпехта в положительной характеристике и т.д. Интересно, что аппарат T-пространств оказался одинаково эффективным как при доказательстве положительных утверждений, так и при построении контрпримеров.

Для удобства читателя напомним основные определения.

Итак, пусть $F = k\langle x_1, \ldots, x_i, \ldots \rangle$ — свободная счетнопорожденная ассоциативная алгебра над полем k и T— полугруппа эндоморфизмов (подстановок) алгебры F.

Эндоморфизм τ алгебры F, определяемый соответствием $x_i \mapsto g_i$, где $g_i \in F$, $i=1,2,\ldots$, будем называть nodcmanoskoй muna $(x_1,\ldots,x_i,\ldots) \mapsto (g_1,\ldots,g_i,\ldots)$. В тех случаях, когда применяется подстановка типа $(x_1,x_2,\ldots,x_{i-1},x_i,x_{i+1},\ldots)\mapsto (x_1,x_2,\ldots,x_{i-1},g_i,x_{i+1},\ldots)$, мы будем писать для краткости $\tau\colon x_i\mapsto g_i,\ \tau\in T$. Через f^τ обозначим образ многочлена f из алгебры F относительно подстановки τ . В полугруппе T можно рассматривать подполугруппы подстановок различных типов: регулярные, симметрические и т.д. (см. [1,2]).

¹Гришин Александр Владимирович (alex@grishin.mccme.ru), Цыбуля Лилия Михайловна, кафедра алгебры Московского педагогического государственного университета, 107140, Россия, г. Москва, ул. Краснопрудная, 14.

Следуя [1] и [3], назовем векторное подпространство V алгебры F T-пространством, если V замкнуто относительно подстановок (т.е. из $f \in V$ и $\tau \in T$ следует, что $f^{\tau} \in V$). Обозначим через S^T T-пространство, порожденное подмножеством S некоторого T-пространства. Другими словами, S^T есть минимальное T-пространство, содержащее S. Назовем T-пространство конечнопорожденным, если для некоторого его конечного подмножества S оно совпадает с S^T .

По определению T-uдеaл алгебры F—это ее идеал, являющийся одновременно и T-пространством.

Хорошо известно взаимнооднозначное соответствие между многообразиями ассоциативных алгебр, T-идеалами алгебры F и относительно свободными алгебрами, т.е. факторалгебрами алгебры F по соответствующему T-идеалу.

Очевидным образом определяется правое действие полугруппы T на любой относительно свободной алгебре, на которой, следовательно, также можно ввести понятие T-пространства.

Если k — коммутативное кольцо с единицей, то аналогичным образом можно ввести понятие T-модуля (T-группы, если k = Z).

Ясно, что любое T-пространство в относительно свободной алгебре естественным образом наделяется структурой унитарного правого kT-модуля (kT- полугрупповая k-алгебра). Это приводит к следующему определению, существенно обобщающему предыдущее определение T-пространства.

Назовем T-пространством (абстрактным) над полем k любой унитарный правый kT-модуль.

Соответственно, морфизмами T-пространств являются гомоморфизмы их как kT-модулей.

Как и выше через S^T обозначается T-пространство, порожденное подмножеством S в некотором T-пространстве.

Расширяя таким образом понятие T-пространства, мы освобождаемся от необходимости рассматривать только подпространства в относительно свободных алгебрах. Можно рассматривать еще и фактор-T-пространства, прямые суммы и т.д. Кроме того, имеется большой запас примеров T-пространств иной природы, связанных со следами, квазимногочленами и некоторыми другими специальными конструкциями (см. [1,2]).

Встречающиеся ниже T-пространства обладают, как правило, еще и мультипликативной структурой. В связи с этим введем следующие определения.

Назовем алгебру A над полем k T-алгеброй, если A — унитарный правый kT-модуль (т.е. T-пространство), на котором элементы полугруппы T действуют как эндоморфизмы алгебры A. Идеалы алгебры A, являющиеся T-алгебрами, будем называть T-uдеалами.

Ясно, что данные определения обобщают классические понятия свободной алгебры и T-идеала.

Пусть I — произвольный T-идеал алгебры F (возможно, нулевой). Относительно свободная алгебра F/I является, очевидно, циклическим kT-модулем, порожденным любой из своих переменных. Согласно результатам одного из авторов (см. [1,2]), если k — поле нулевой характеристики, а идеал I содержит многочлен Капели

$$c_n = \sum_{\sigma \in S_n} (-1)^{\sigma} y_0 x_{\sigma(1)} y_1 \dots x_{\sigma(n)} y_n,$$

то этот циклический модуль нетеров. В качестве следствия получается конечная базируемость любого Т-идеала, содержащего многочлен Капели. Позже В.В. Щиголев доказал (см. [4]), что всякие условия на T-идеал Iможно отбросить, т.е. $F = \{x_1\}^T$ — нетеров kT-модуль. Положительное решение проблемы Шпехта (см. [5]) является, как легко видеть, весьма частным случаем этого факта. Пусть $\mathfrak C$ — класс kT-модулей, порожденный циклическим модулем F и замкнутый относительно взятия подмодулей, фактормодулей и конечных прямых сумм. Назовем $\mathfrak C$ классом комбинаторных модулей. Будем называть комбинаторными модулями T-пространства из \mathfrak{C} . В частности, комбинаторные T-алгебры — это T-алгебры из класса \mathfrak{C} . Из сказанного выше следует, что в случае поля нулевой характеристики любой комбинаторный модуль нетеров. В характеристике p > 0 это не так. Первые контрпримеры, в частности, в характеристике 2 были приведены одним из авторов в [6,7]. Вслед за этим последовала целая серия конструкций в характеристике p > 2 (см. [8–10]). Построение общей теории комбинаторных модулей, как представляется, еще впереди. Наиболее полный обзор по теории T-пространств, ее результатам и открытым вопросам можно найти в работах [2,11].

В настоящей работе изучаются T-пространства в относительно свободной алгебре $F^{(3)} = F/I$, где I - T-идеал, порожденный «тройным коммутатором» $[[x_1, x_2], x_3]$ (так называемое тождество Грассмана). Образы свободных переменных алгебры F в относительно свободной алгебре $F^{(3)}$ будем обозначать также, как и сами переменные. Кроме того, часть переменных иногда для удобства обозначается буквами y_i, z_i . Всюду ниже k- бесконечное поле характеристики p > 0. В дальнейшем в основном рассматриваются унитарно замкнутые T-пространства в алгебре $F^{(3)}$, т.е. такие T-пространства, которые замкнуты относительно подстановки вместо переменной единицы с последующей проекцией на алгебру $F^{(3)}$ (отбрасывание свободного члена).

Приведем точные определения. Пусть $F\langle 1 \rangle = k \langle 1, x_1, \ldots, x_i, \ldots \rangle$ — свободная счетнопорожденная ассоциативная k-алгебра с единицей. Она может быть естественным образом представлена в виде прямой суммы T-пространств

$$F\langle 1 \rangle = F \oplus k$$

с тривиальным действием полугруппы T на поле k (т.е. $\alpha^T = \alpha$, $\alpha \in k$). Расширим полугруппу операторов T, действующих на алгебре F, следующим образом. Пусть $\varepsilon \colon F \hookrightarrow F(1)$ — вложение, $\pi \colon F(1) \to F$ — проекция. Назовем

унитарным преобразованием алгебры F отображение $\varphi = \varepsilon \tau \pi \colon F \to F$, где τ — некоторый эндоморфизм алгебры $F\langle 1 \rangle$ (действие справа). Через T^e обозначим полугруппу, порожденную унитарными преобразованиями.

Легко видеть, что всякий эндоморфизм алгебры F является ее унитарным преобразованием. Обратное, вообще говоря, неверно. В самом деле, пусть τ — эндоморфизм алгебры $F\langle 1 \rangle$, задаваемый соответствием: $x_1 \mapsto f + 1$, $x_2 \mapsto g + 1$, где $f,g \in F$, на остальных переменных — тождественно. Тогда, если $\phi = \varepsilon \tau \pi$, то $(x_1 x_2)^{\phi} = fg + f + g$, а $x_1^{\phi} x_2^{\phi} = fg$. Таким образом, имеют место строгие включения: $T \subset T^e$, $kT \subset kT^e$.

Назовем унитарно замкнутым T-пространством (T^e -пространством) любое векторное подпространство алгебры F, замкнутое относительно действия полугруппы T^e . Такие T-пространства естественно рассматривать, как kT^e -модули, что и будет делаться в дальнейшем.

Легко видеть, что в характеристике 2 T-пространство, порожденное x_1^2 , унитарно замкнуто, а T-пространство, порожденное x_1^{10} , не унитарно замкнуто (с помощью унитарных преобразований можно понизить степень).

Унитарно замкнутый T-идеал (T^e -идеал) — это идеал алгебры F, являющийся одновременно и T^e -пространством. Примером унитарно замкнутого T-идеала может служить T-идеал, порожденный многочленом [[x_1, x_2], x_3], а T-идеал, порожденный многочленом $x_1[x_2, x_3]$, таковым не является. Отметим еще, что если $\tau\colon x_1\mapsto 1$ и $\varphi=\epsilon\tau\pi$, то $x_1^\varphi=0$.

Аналогично изложенному выше вводятся T^e -пространства, T^e -идеалы в относительно свободных алгебрах, соответствующих унитарно замкнутым T-идеалам, а также абстрактные T^e -пространства и T^e -алгебры.

Для подмножества S некоторого T^e -пространства обозначим через S^{T^e} порожденное этим подмножеством T^e -пространство. Унитарно замкнутое T-пространство V характеризуется равенством $V^{T^e}=V$.

При построении контрпримеров в характеристике p чрезвычайно важную роль (из бесконечно базируемых T-пространств потом строятся бесконечно базируемые T-идеалы) играет T-пространство, порожденное всеми n-словами. Под n-словом понимается любой одночлен алгебры F (и, соответственно, алгебры $F^{(3)}$), содержащий каждую из входящих в него переменных с кратностью n. Основным объектом для нас будет унитарно замкнутое T-пространство W_n , порожденное всеми n-словами в алгебре $F^{(3)}$. Все известные в настоящее время примеры бесконечно базируемых T-пространств (и T-идеалов), лежащих в относительно свободных алгебрах, происходят из W_n .

Весьма актуальной представляется следующая задача ((p,n)-проблема (см. [11])): описать структуру T^e -пространства W_n , найти порождающие элементы. Впервые исследование структурных вопросов в данных T-пространствах было предпринято в работах [12,13]. Если (n,p)=1, то ответ очевиден: $W_n = F^{(3)} = \{x_1\}^{T^e}$ — циклический kT^e -модуль. В самом деле, достаточно к элементу x_1^n применить подстановку $x_1 \mapsto x_1 + 1$ и выделить линейную

часть. Если же n делится на p, то возникает достаточно содержательная теория, имеющая свою специфику в случае p=2.

Ниже приводятся последние результаты по указанной проблеме.

1. Предварительные обозначения, определения и результаты

Отметим основные соотношения в алгебре $F^{(3)}$, применяемые при вычислениях в T^e -пространстве W_n (см. [8]).

І. Коммутаторные соотношения:

$$[x_1, x_2][x_1, x_3] = 0,$$

$$[x_1^p, x_2] = 0$$
 в характеристике *p*.

II. Соотношения Фробениуса:

$$(x_1 + \ldots + x_r)^{p^l} = x_1^{p^l} + \ldots + x_r^{p^l}; \quad (x_1 \ldots x_r)^{p^l} = x_1^{p^l} \ldots x_r^{p^l}$$

в характеристике p>2 для любого $l\in N$ или p=2 при l>1.

Напомним, что первое равенство из коммутаторных соотношений является, как нетрудно проверить, следствием тождества «тройного коммутатора», а второе получается прямыми вычислениями, использующими также указанное тождество и условие на характеристику поля.

Для удобства читателя приведем доказательства соотношений Фробениуса, из которых станет ясно, почему характеристика 2 имеет свои особенности.

Итак, рассмотрим первое равенство из соотношений II для случая p>2, $l\in N.$

Достаточно доказать его справедливость для двух переменных при l=1. В этом случае однородный многочлен $b=(x_1+x_2)^p$ можно представить в виде суммы $b=\sum_{\sigma_m}b_{\sigma_m}$, где b_{σ_m} — полиоднородный многочлен типа $\sigma_m=(p-m,m),\ m=\overline{0,p}.$

Докажем, что $b_{\sigma_m}=0$ для любого $m=\overline{1,p-1}.$ Для m=1, как нетрудно проверить, при p>2 выполняются равенства:

$$b_{\sigma_1} = x_1^{p-1} x_2 + x_1^{p-2} x_2 x_1 + \dots + x_1 x_2 x_1^{p-2} + x_2 x_1^{p-1} =$$

$$= p x_1^{p-1} x_2 + \frac{p(p-1)}{2} x_1^{p-2} [x_2, x_1] = 0.$$
(1)

Линеаризуя соотношение $x_1^{p-1}x_2 + x_1^{p-2}x_2x_1 + \ldots + x_1x_2x_1^{p-2} + x_2x_1^{p-1} = 0$, получаем:

$$\sum_{\sigma \in S_p} x_{\sigma(1)} \dots x_{\sigma(p)} = 0.$$
 (2)

Осуществим в многочлен $\sum_{\sigma \in S_p} x_{\sigma(1)} \dots x_{\sigma(p)}$ ряд подстановок: $x_i \mapsto x_1$, $i = \frac{1}{1, p-m}$, $x_j \mapsto x_2$, $j = \overline{p-m+1}$, p (на p-m мест, которые занимают первые p-m переменных, ставится x_1 , на остальные m мест, которые занимают

следующие m переменных, ставится x_2). После такой замены, как легко видеть, получается многочлен $(p-m)!\,m!\,b_{\sigma_m}$. Т.к. (m,p)=1, то, используя (1) и (2), получаем, что $b_{\sigma_m}=0$ для любого $m=\overline{1,p-1}$ при p>2. Отсюда следует, что

$$(x_1 + x_2)^p = x_1^p + x_2^p.$$

Пусть теперь p=2, l>1. Нетрудно видеть, что при l=2 имеет место равенство $(x_1+x_2)^4=x_1^4+x_2^4$. Далее, индукцией по l легко показать, что $(x_1+x_2)^{2^l}=x_1^{2^l}+x_2^{2^l}$.

Рассмотрим второе равенство из соотношений II. Достаточно показать, что оно справедливо для двух переменных. Нетрудно проверить, что в алгебре $F^{(3)}$ имеет место следующее равенство:

$$x_1^n x_2^n = (x_1 x_2)^n + \frac{n(n-1)}{2} x_1^{n-1} x_2^{n-1} [x_1, x_2]$$
 (3)

для любого $n \in \mathbb{N}$. Из этого равенства при $n = p^l$ для любой характеристики p и любого натурального значения l, кроме случая p = 2, l = 1, получаем справедливость 2-го соотношения Фробениуса для двух переменных.

Замечание 1. В характеристике p = 2, l = 1 получим:

$$(x_1 + x_2)^2 = x_1^2 + x_2^2 + [x_1, x_2]; (x_1 x_2)^2 = x_1^2 x_2^2 + x_1 x_2 [x_1, x_2],$$

т.е. соотношения Фробениуса места не имеют.

Приведенные выше рассуждения фактически и объясняют специфику случая характеристики 2.

Для исследования строения элементов T^e -пространства W_n воспользуемся соотношениями І. Как нетрудно проверить, любое n-слово в алгебре $F^{(3)}$ с помощью этих соотношений с точностью до переобозначения можно представить в виде линейной комбинации многочленов следующего вида:

$$g_{r,s}(n) = x_1^{n-1} y_1^{n-1} [x_1, y_1] \dots x_r^{n-1} y_r^{n-1} [x_r, y_r] z_1^n \dots z_s^n,$$

где r и s — всевозможные целые неотрицательные числа, причем при r=0 отсутствуют x_i, y_i (чисто степенные многочлены), а при s=0 отсутствуют $z_i; g_{0,0}(n)=0$. Многочлены $g_{r,s}(n)$, у которых $r\geqslant 1$, будем называть коммутаторными. Кроме того, выделим так называемые чисто коммутаторные многочлены $c_r(n)=g_{r,0}(n)$ и чисто степенные, называемые еще диагональными, $d_s(n)=g_{0,s}(n)$. Отметим, что $c_1(1)=[x_1,y_1], d_1(1)=x_1$.

Одночлены $d_s(n)$ диагональны в смысле следующих определений.

2-слово, то $w_{x_1} = (0,0)_{x_1}, \ w_{x_2} = (2,3)_{x_2}, \ w_{x_3} = (3,4)_{x_3}.$ Слова, которые имеют равные между собой координаты по каждой из входящих в него переменных x_i , мы называем диагональными. Ясно, что n-слово w является диагональным тогда и только тогда, когда имеет следующий вид: $w=x_1^n\dots x_m^n$.

Таким образом, введенные в этом пункте определения поясняют дальнейший выбор обозначений.

Итак, рассмотрим следующие унитарно замкнутые T-подпространства

 $C_n = \{c_1(n), \dots, c_i(n), \dots\}^{T^e}$ — чисто коммутаторная компонента; $D_n = \{d_1(n), \dots, d_i(n), \dots\}^{T^e}$ — диагональная компонента;

 $CD_n = \{g_{r,s}(n) \mid r \geqslant 1\}^{T^e}$ — коммутаторная компонента.

Тогда $C_1 = \{c_1(1)\}^{T^e} - T^e$ -пространство, $CD_1 = C = (c_1(1))^{T^e} - T^e$ -идеал (коммутант алгебры $F^{(3)}$), порожденные одним коммутатором.

Аналогичные T-пространства $C_n^* = \{c_1(n), \dots, c_i(n), \dots\}^T$, $D_n^* = \{d_1(n), \dots, d_i(n), \dots\}^T$, $CD_n^* = \{g_{r,s}(n) \mid r \geqslant 1\}^T$, вообще говоря, меньше и несколько более сложно устроены. Исключение: $D_{p^l} = D_{p^l}^*$.

В следующих пунктах настоящей работы мы исследуем структуру T^e -пространства W_n , используя введенные выше компоненты этого пространства.

Начнем с некоторых вспомогательных фактов, которые потребуются в дальнейшем. Справедливы следующие утверждения (см. [8]).

Лемма 1. Многочлен $x^{p^s-1}y^{p^s-1}[x,y] \notin \{x^{p^t-1}y^{p^t-1}[x,y] \mid t = \overline{1,s-1}\}^{T^e}$.

Пемма 2. Если $f_1, f_2, f_3, f_4 \in F^{(3)}$ — произвольные многочлены, зависящие только от двух переменных, то

$$[f_1, f_2][f_3, f_4] = 0.$$

Докажем следующее утверждение.

Лемма 3. Для любого простого числа p в алгебре $F^{(3)}[x_1,y_1][x_2,y_2]\cdots$ $\cdots [x_i, y_i] \neq 0, i = 1, 2, \dots$

Доказательство. Рассмотрим 2 случая.

- 1) p>2. В алгебре Грассмана $G=k\langle e_1,\ldots,e_n,\ldots\rangle/\{e_ie_j+e_je_i\mid i,j\in N\}$, как известно, выполнено тождество $[[x_1, x_2], x_3] = 0$. С другой стороны, в алгебре G выполняется $[e_1,e_2][e_3,e_4]\cdots [e_{n-1},e_n]=2^{n/2}e_1\cdots e_n\neq 0$, что показывает справедливость утверждения леммы для данного случая.
- 2) p=2. В этом случае рассматривается алгебра Φ_2 , на которой также выполнено тождество $[[x_1, x_2], x_3] = 0$, и которая является аналогом алгебры Грассмана в характеристике 2 (см. [12]). Алгебра Φ_2 строится следующим образом. Пусть $A = k[..\alpha_{ij}..]$ — коммутативная k-алгебра, порожденная элементами α_{ij} , где $i, j \in N, i \neq j, \alpha_{ij} = \alpha_{ji}, (1 + \alpha_{ij})(1 + \alpha_{il}) = 0, (1 + \alpha_{ij})(1 + \alpha_{mn}) =$ $=(1+lpha_{im})(1+lpha_{jn}).$ Алгебра $\Phi_2=A\langle x_1,\ldots,x_i,\ldots\rangle/J,$ где J-идеал свободной A-алгебры $A\langle x_1,\ldots,x_i,\ldots\rangle$, порожденный элементами $x_ix_i+\alpha_{ij}x_ix_i$. Алгебра Fестественным образом вложена в алгебру $A\langle x_1,\ldots,x_i,\ldots\rangle$, а алгебра $F^{(3)}$ в алгебру Φ_2 .

Положим $\theta_{ij}=1+\alpha_{ij}$. Идеал J в таком случае порождается элементами $\theta_{ij}x_jx_i+[x_i,x_j]$. Таким образом, из определения идеала J следует, что $[x_1,x_2][x_3,x_4]\cdots[x_{2i-1},x_{2i}]=\theta_{12}\cdots\theta_{(2i-1)(2i)}x_2x_1\cdots x_{2i}x_{2i-1}\neq 0$. Отсюда получаем справедливость утверждения леммы 3 при $y_j=x_{2j}$ для всех $j=1,2,\ldots,i$.

Имеет место следующая

Теорема 1. Для любого $i \ge 2$ многочлен $c_i(p^l)$ не лежит в T^e -пространстве $\{c_1(p^l), \ldots, c_{i-1}(p^l)\}^{T^e} + (x^m)^T$, где $(x^m)^T - T$ -идеал, порожденный x^m , m = p, если p > 2, и m = 4, если p = 2.

Доказательство. Предположим сначала, что $p>2,\ l\geqslant 1$ или $p=2,\ l>1.$ Допустим, что

$$c_i(p^l) = (c_1(p^l))^{\tau_1} + \dots + (c_{i-1}(p^l))^{\tau_{i-1}} + f,$$
 (4)

где $f \in (x^m)^T$, $\tau_s \in kT^e$, $s \leqslant i-1$. Учитывая, что коммутатор [u,v] любых двух многочленов в $F^{(3)}$ можно расписать как линейную комбинацию коммутаторов от переменных, умноженных на одночлены, каждый из многочленов $(c_s(p^l))^{\tau_s}$, где $s \leqslant i-1$, является линейной комбинацией произведений s коммутаторов вида $[x_i, x_j]$ и одночлена. Т.к. кратность вхождения всех переменных в левую часть равенства (4) равна p^l , то во всех многочленах $(c_s(p^l))^{\tau_s}$ имеется сомножитель вида x_r^m (хотя бы одна буква не попадает в коммутатор). Следовательно, $c_i(p^l) \in (x^m)^T$ в $F^{(3)}$.

Применяя подстановку $x \mapsto x+1$ к каждой из входящих в $c_i(p^l)$ переменных и линеаризуя, получим из многочлена $c_i(p^l)$ произведение коммутаторов $[x_1, y_1] \cdots [x_i, y_i]$. С другой стороны, аналогичные подстановки и линеаризации многочлена из $(x^m)^T$ в силу соотношений Фробениуса дают нуль. Таким образом, $[x_1, y_1] \cdots [x_i, y_i] = 0$ в $F^{(3)}$, что противоречит лемме 3.

Рассмотрим теперь случай p=2, l=1. Покажем, что для любого r>1 многочлен $c_r(2)$ нельзя получить никакими подстановками и k-линейными действиями из предыдущих многочленов $c_1(2), \ldots, c_{r-1}(2)$. Допустим противное. Заметим, что многочлен $c_r(2)$ является произведением r многочленов вида xy[x,y]:

$$c_r(2) = x_1 y_1[x_1, y_1] x_2 y_2[x_2, y_2] \cdots x_r y_r[x_r, y_r].$$

Тогда, с одной стороны, прямые вычисления с применением равенства

$$xy[x,y] = (xy)^2 - x^2y^2$$
 (5)

к многочлену $c_r(2)$ показывают, что $c_r(2)$ есть линейная комбинация многочленов, каждый из которых получается некоторыми подстановками из произведения меньшего, чем 2r, числа квадратов переменных, и одночлена, являющегося произведением 2r квадратов переменных. С другой стороны, сделанное выше предположение и применение равенства (5) к элементам $c_1(2), \ldots, c_{r-1}(2)$ позволяет представить многочлен $c_r(2)$ в виде линейной комбинации многочленов, каждый из которых получается некоторыми подстановками из произведения 2r-1 и меньшего числа квадратов переменных. Отсюда получаем, что произведение 2r квадратов переменных можно

получить некоторыми подстановками и k-линейными действиями из произведений меньшего, чем 2r, числа квадратов переменных, что невозможно в силу результатов работы [6]. Следовательно, $c_r(2) \notin \{c_1(2), \dots, c_{r-1}(2)\}^{T^e}$. Добавление T-идеала $(x^4)^T$ по существу ничего не меняет из очевидных соображений степеней. Теорема 1 доказана.

Непосредственно из теоремы 1 получаем

Следствие 1. T^e -пространство $C_{p^l} + (x^m)^T$, где m = p, если p > 2, и m = 4, если p = 2, является бесконечно базируемым.

Имеет место также следующее утверждение.

Следствие 2. T^e -пространство $CD_{p^l} + (x^m)^T$, где m = p, если p > 2, и m = 4, если p = 2, является бесконечно базируемым.

Доказательство. Сначала рассмотрим случай $p > 2, l \geqslant 1$ или p == 2, l > 1. В силу второго соотношения Фробениуса достаточно рассмотреть в качестве порождающих элементов T^e -пространства CD_{p^l} многочлены $g_{r,1}(p^l)=x_1^{p^l-1}y_1^{p^l-1}[x_1,y_1]\cdots x_r^{p^l-1}y_r^{p^l-1}[x_r,y_r]z_1^{p^l},\ r>0.$ Допустим, что для некоторого r>1 многочлен $g_{r,1}(p^l)$ лежит в T^e -пространстве $\{g_{i,1}(p^l)\mid i=1\}$ $=\overline{1,r-1}\}^{T^e}+(x^m)^T$, где m=p, если p>2, и m=4, если p=2. Положив в многочлене $g_{r,1}(p^l)$ $z_1 = 1$, получим по нашему предположению, что

$$c_r(p^l) = \left(g_{1,1}(p^l)\right)^{\tau_1} + \dots + \left(g_{r-1,1}(p^l)\right)^{\tau_{i-1}} + f,\tag{6}$$

где $f \in (x^m)^T$, $\tau_t \in kT^e$, $t \leq i-1$. Заметим, что в общем случае вместо переменной z_1 каждого слагаемого $g_{t,1}(p^l)$ подставляется многочлен вида $u_1+\ldots+u_s+lpha,$ где $u_1,\ldots,u_s\in F^{(3)}$ — некоторые многочлены без свободного члена, $\alpha \in k$. Поэтому, в силу соотношений Фробениуса каждый многочлен $(g_{t,1}(p^l))^{\tau_t}$, $t \leq i-1$, распадается на два слагаемых, одно из которых лежит в $(x^m)^T$, а другое лежит в $\{c_t(p^l)\}^{T^e}$. Тогда согласно (6) $c_r(p^l) \in \{c_1(p^l), \dots c_{r-1}(p^l)\}^{T^e} + (x^m)^T$, что противоречит теореме 1.

Пусть теперь $p=2,\ l=1.$ Доказательство бесконечной базируемости CD_2 почти дословно повторяет рассуждения, приведенные в теореме 1 в случае p=2, l=1. Добавление T-идеала $(x^4)^T$, как и выше, ничего не меняет. Следствие доказано.

Несложно показать, что справедливо

Следствие 3. T^e -пространство $(C_{p^l} + (x^m)^T)/(x^m)^T$, где m = p, если p > 2, и m = 4, если p = 2, является бесконечно базируемым.

В дальнейшем нам потребуется следующая

Лемма 4.

Для любого простого числа p и любого $l \in N$ $x_1^{p^{l+1}-1}y_1^{p^{l+1}-1}[x_1,y_1] \notin C_{p^l}$. Доказательство. Заметим, что многочлен $x_1^{p^{l+1}-1}y_1^{p^{l+1}-1}[x_1,y_1]$ зависит от двух переменных. Поэтому, если предположить, что $x_1^{p^{l+1}-1}y_1^{p^{l+1}-1}[x_1,y_1]$ принадлежит T^e -пространству

$$C_{p^l} = \{c_r(p^l) = x_1^{p^l - 1} y_1^{p^l - 1} [x_1, y_1] \dots x_r^{p^l - 1} y_r^{p^l - 1} [x_r, y_r] | r \geqslant 1\}^{T^e},$$

то те слагаемые линейной комбинации, которые получаются некоторыми подстановками из многочленов $c_r(p^l)$ при $r\geqslant 2$, становятся равными нулю в силу леммы 2. Значит многочлен $x_1^{p^{l+1}-1}y_1^{p^{l+1}-1}[x_1,y_1]\in\{x_1^{p^{l-1}}y_1^{p^l-1}[x_1,y_1]\}^{T^e}$, что противоречит лемме 1, и лемма доказана.

Для T^e -пространств C_{p^l} и CD_{p^l} имеет место следующее утверждение. **Предложение 1.** Для любого простого числа p и любого $l \in N$ выполнено

$$C_{p^l}$$
 \subset CD_{p^l} , где $C_{p^l} \neq C_{p^{l+1}}$.

Доказательство. Непосредственно из леммы 4 следует, что $C_{p^l} \neq C_{p^{l+1}}$. Далее, подставляя 1 вместо всех переменных z_i , $i=\overline{1,s}$, порождающих элементов $g_{r,s}(p^l)$ коммутаторной компоненты CD_{p^l} , получаем очевидное включение $C_{p^l} \subset CD_{p^l}$. Для доказательства строгости этого включения достаточно указать элемент из T^e -пространства CD_{p^l} , не принадлежащий в тоже время T^e -пространству C_{p^l} . В качестве такого элемента рассмотрим многочлен $x_1^{p^{l+1}-1}y_1^{p^{l+1}-1}[x_1,y_1]$. Действительно, его можно получить из многочлена $z_1^{p^l}x_1^{p^{l-1}}y_1^{p^{l-1}}[x_1,y_1] \in CD_{p^l}$ следующей подстановкой $\tau\colon z_1\mapsto x_1^{p-1}y_1^{p-1}$. Тогда из леммы 4 вытекает строгость включения, и предложение доказано.

2. Разложение T^e -пространства W_n на диагональную и коммутаторную составляющие

Как уже отмечалось, при (n,p)=1 имеет место равенство $W_n=F^{(3)}$. Если $n=p^ln_1$, где $l\geqslant 1$, $(n_1,p)=1$, то, как будет ясно из дальнейшего, $W_n=W_{p^l}$. Имеет место следующая

Теорема 2.

1. Во всех случаях, кроме $p=2,\ l=1,\ kT^e$ -модуль W_{p^l} раскладывается в прямую сумму:

$$W_{p^l} = CD_{p^l} \oplus D_{p^l}. (7)$$

2. При $p=2,\ l=1$ имеет место равенство $W_2=D_2,$ причем $C_2 \subset CD_2 \subset D_2,$ и все указанные T^e -пространства бесконечно базируемы.

Доказательство.

1. Из соотношений I следует, что $W_{p^l} = CD_{p^l} + D_{p^l}$. Покажем, что

$$CD_{n^l} \cap D_{n^l} = \{0\}.$$

Пусть $f \in D_{p^l}$, тогда из соотношений Фробениуса и перестановочности p-ой степени переменной с любым элементом алгебры $F^{(3)}$ следует, что:

$$f = \alpha x_1^{p^l m_1} x_2^{p^l m_2} \dots x_t^{p^l m_t}, \tag{8}$$

где $\alpha \in k$, $m_i \in N \cup \{0\}$, $i = \overline{1, t}$.

Если $\alpha = 0$, то f = 0, и все доказано.

Предположим, что $\alpha \neq 0$. Тогда, подставляя 1 вместо всех переменных, с одной стороны, согласно (8) получаем $f(1,\ldots,1)=\alpha$, с другой стороны, $f(1,\ldots,1)=0$, т.к. $f\in CD_{p^l},$ — противоречие. Следовательно, имеет место (7).

2. Согласно предложению 1 $C_2 \subset CD_2$. Теперь покажем, что $CD_2 \subset D_2$. Применяя соотношение (5) к каждому сомножителю вида xy[x,y] в многочлене $g_{r,s}(2) = x_1y_1[x_1,y_1]x_2y_2[x_2,y_2]\dots x_ry_r[x_r,y_r]z_1^2z_2^2\dots z_s^2$, мы получим, что любой элемент $g_{r,s}(2) \in CD_2$ представляет собой линейную комбинацию многочленов, каждый из которых получается некоторыми подстановками из произведения некоторого числа квадратов переменных, т.е. из элементов T^e -пространства D_2 . Таким образом, справедливо включение $CD_2 \subset D_2$. Строгость включения устанавливается с помощью факторизации по тождеству коммутативности.

Из равенства $W_2 = CD_2 + D_2$, справедливого в силу соотношений I, и доказанного выше утверждения, что CD_2 — собственный подмодуль в D_2 , имеем $W_2 = D_2$. Таким образом, из результатов работы [6] следует, что W_2 — бесконечно базируемое T^e -пространство. Бесконечная базируемость T^e -пространств C_2 и CD_2 показана в доказательстве теоремы 1 и доказательстве следствия 2 соответственно. Теорема 2 доказана.

Отметим, что компоненты указанного в теореме 2 прямого разложения (7) имеют прямо противоположные свойства с точки зрения вопроса о конечной базируемости. Это будет видно из приводимых ниже теорем 3 и 4.

3. Структура диагональной компоненты D_n

Отметим еще раз, что если (n,p)=1, то ответ тривиален: $D_n=F^{(3)}=D_1$. Интерес представляет случай: $n=p^ln_1,\ l\geqslant 1,\ (n_1,p)=1$.

Теорема 3.

- 1. $D_n = D_{n^l}$.
- 2. $D_{p^l} = \{d_1(p^l)\}^{T^e}$ при любом $p > 2,\ l \in N$ и при $p = 2,\ l > 1.$
- 3. $D_{p^m} \subset D_{p^l}$ при l < m.
- 4. Если p=2, то D_2 имеет бесконечную неприводимую систему порождающих $\{d_i(2) \mid i \in N\}$ (см. [6]).
- 5. При любом p > 2, $l \in N$ и при p = 2, l > 1 D_{p^l} изоморфно T^e -алгебре коммутативных многочленов с естественной T^e -структурой, и, следовательно, является нетеровым kT^e -модулем.

Доказательство.

1. При заданных условиях на n и p чтобы показать справедливость включения $D_n\subset D_{p^l},$ т.е. $\{x_1^n,\ldots,x_1^n\cdots x_i^n,\ldots\}^{T^e}\subset \{x_1^{p^l},\ldots,x_1^{p^l}\cdots x_i^{p^l},\ldots\}^{T^e},$ в каждом p^l -слове $x_1^{p^l}\cdots x_i^{p^l}\in D_{p^l},$ $i=1,2,\ldots,$ к переменным $x_j,$ $j=1,\ldots,i,$ достаточно применить подстановки: $x_j\mapsto x_j^{n_1}$.

Покажем справедливость включения $D_{p^l} \subset D_n$. Сначала укажем способ, как из x_1^n можно получить $x_1^{p^l}$. К одночлену x_1^n применим подстановку $x_1 \mapsto x_1 + 1$. Выделим из одночлена x_1^n однородную компоненту степени p^l , получим одночлен $\binom{n}{p^l} x_1^{p^l}$. Если $n = p^l n_1$, то биномиальный коэффициент $\binom{n}{p^l}$ расписывается следующим образом:

$$\binom{n}{p^l} = \binom{p^l n_1}{p^l} = \frac{p^l n_1}{p^l} \cdot \frac{p^l n_1 - 1}{p^l - 1} \cdot \dots \cdot \frac{p^l n_1 - (p^l - 1)}{p^l - (p^l - 1)}.$$

Этот коэффициент содержит как дроби, числитель и знаменатель которых не делятся ни на какую степень числа p, так и дроби с противоположным свойством. Рассмотрим последние. Легко видеть, что такие дроби имеют вид $\frac{p^l n_1 - p^s a}{p^l - p^s a}$, где $p^l > p^s a$, (a, p) = 1, т.е. содержат в числителе и знаменателе одну и ту же степень числа p, равную p^s , тогда биномиальный коэффициент $\binom{n}{p^l}$ при $x_1^{p^l}$ не делится на p. В силу бесконечности поля k получим $x_1^{p^l} \in D_n$. Применяя к одночлену $x_1^n \cdots x_i^n$, $i = 1, 2, \ldots$, указанный выше способ понижения степени, получим справедливость включения, и утверждение (1) теоремы доказано.

- 2. Из второго соотношения Фробениуса следует, что произвольный порождающий элемент $x_1^{p^l}\cdots x_s^{p^l},\ s=1,2,\ldots,\ T^e$ -пространства $D_{p^l},\$ получается подстановкой одночлена $x_1\cdots x_s$ вместо переменной x_1 в одночлен $x_1^{p^l},\$ т.е. D_{p^l} циклический kT^e -модуль.
- 3. Рассмотрим сначала случай p>2, $l\geqslant 1$ или p=2, l>1. Согласно только что доказанному $D_{p^l}=\{x_1^{p^l}\}^{T^e}$, поэтому достаточно показать, что из $x_1^{p^l}$ можно получить $x_1^{p^m}$ при l< m. Для этого к одночлену $x_1^{p^l}$ нужно применить подстановку $x_1\mapsto x_1^{p^{m-l}}$. Отсюда, $D_{p^m}\subset D_{p^l}$. Строгость включения вытекает из соотношений Фробениуса.

В случае p=2, l=1 включение также имеет место. Для этого нужно применить к одночленам $x_1^2\cdots x_i^2$, $i=1,2,\ldots$, указанный выше способ повышения степени. Строгость очевидна в силу бесконечной базируемости T^e -пространства D_2 (см. работу [6]) и доказанной конечной порожденности D_{2^m} при m>1 (см. пункт (2) данной теоремы).

5. Нетеровость kT^e -модуля D_{p^l} в случае p>2, $l\in N$ и p=2, l>1 устанавливается с помощью его изоморфизма с T^e -алгеброй коммутативных многочленов с естественной T^e -структурой и применением результата работы [14]:

$$k[y_1, \dots, y_i, \dots] \cong D_{p^l}, \tag{9}$$

где $k[y_1,\ldots,y_i,\ldots]$ — нетеров kT^e -модуль.

Ясно, что $D_{p^l}=k[x_1^{p^l},\ldots,x_i^{p^l},\ldots]$, тогда изоморфизм (9) устанавливается очевидным взаимно однозначным соответствием $y_i\mapsto x_i^{p^l}$. Построенное

соответствие является изоморфизмом как kT^e -модулей в силу соотношений Фробениуса. Отметим, что при этом изоморфизме $k[y_1^p,\ldots,y_i^p,\ldots]$ переходит в $D_{p^{l+1}}$. Теорема 3 доказана.

Пусть теперь D_n^* — не унитарно замкнутое T-пространство, порожденное той же системой одночленов, что и D_n . В следующем предложении показано, что структура D_n^* в некоторой степени отличается от структуры D_n (нет спуска от n к p^l).

Предложение 2. Во всех случаях, кроме p=2, $n=2n_1$, n_1 — нечетное, T-пространство D_n^* порождается одночленом x_1^n . Если p=2, $n=2n_1$, $(n_1,2)=1$, то D_n^* — бесконечно базируемое T-пространство.

Доказательство. Покажем, что во всех случаях, кроме p=2, $n=2n_1$, n_1 — нечетное, $D_n^*=\{x_1^n\}^T$. Достаточно показать справедливость утверждения для n-слова от 2-х переменных. Рассмотрим формулу (3), о которой говорилось в пункте 1 нашей работы. Если $n=p^ln_1$, где $l\geqslant 1$, $(n_1,p)=1$, кроме случая p=2 и l=1, то из соотношения (3) в характеристике p следует, что $x_1^nx_2^n=(x_1x_2)^n$. Если (n,p)=1, то многочлен $x_1^{n-1}x_2^{n-1}[x_1,x_2]$ можно получить из x_1^n некоторыми подстановками и k-линейными действиями. Действительно, используя формулу бинома Ньютона, раскроем выражение $(x_1x_2+[x_1,x_2])^n$:

$$(x_1x_2 + [x_1, x_2])^n = (x_1x_2)^n + \frac{n!}{1!(n-1)!}(x_1x_2)^{n-1}[x_1, x_2] + \frac{n!}{2!(n-2)!}(x_1x_2)^{n-2}[x_1, x_2]^2 + \dots + \frac{n!}{(n-1)!1!}x_1x_2[x_1, x_2]^{n-1} + [x_1, x_2]^n.$$

Применяя первое равенство из коммутаторных соотношений при $x_2 = x_3$ к правой части выражения, получим:

$$(x_1x_2 + [x_1, x_2])^n = (x_1x_2)^n + n(x_1x_2)^{n-1}[x_1, x_2].$$

Из того же равенства

$$(x_1x_2)^{n-1}[x_1, x_2] = x_1^{n-1}x_2^{n-1}[x_1, x_2].$$

Тогда

$$x_1^{n-1}x_2^{n-1}[x_1,x_2] = \frac{(x_1x_2 + [x_1,x_2])^n}{n} - \frac{(x_1x_2)^n}{n}.$$

Остается подставить правую часть последнего равенства в формулу (3). Таким образом, первое утверждение предложения доказано.

В случае p=2, $n=2n_1$, где $(n_1,2)=1$, T-пространство $D_{2n_1}^*$, бесконечно базируемо. Действительно, предположив противное, получим, что тогда и унитарно замкнутое T-пространство $D_{2n_1}=D_2$ конечно порождено, что противоречит результатам работы [6]. Таким образом, все утверждения предложения 2 доказаны.

Проводя рассуждения, аналогичные приведенным для случая (n, p) = 1 в предыдущем доказательстве, нетрудно проверить справедливость следующего утверждения.

Предложение 3. В случае поля нулевой характеристики $D_n^* = \{x_1^n\}^T$ для любого n.

Замечание 2. Легко видеть, что D_2 бесконечно базируемо даже по модулю тождества $x^4 = 0$.

4. Структура коммутаторной компоненты CD_n

Легко видеть, что $C_n \subset CD_n$ для любого $n \in N$. Возникает вопрос о строгости этого включения. Если $n = p^l$, p — любое простое число, $l \in N$, то, как было показано в предложении 1, это включение строгое. Общий случай рассмотрен в следующей теореме, проясняющей также в некоторой степени структуру коммутаторной компоненты.

Теорема 4.

- 1. Если (n,p)=1, то выполнены следующие равенства: $C_n=C_1=\{[x_1,y_1]\}^{T^e},\ CD_n=CD_1=C=([x_1,y_1])^{T^e}.$
- 2. Если $n=p^ln_1,\ (n_1,p)=1,\ l\geqslant 1,\ {\rm To}\ C_n=C_{p^l},\ CD_n=CD_{p^l}$ бесконечно базируемые T^e -пространства.
 - 3. Если l < m, то $C_{p^l} \subseteq C_{p^m}$ и $CD_{p^m} \subseteq CD_{p^l}$.
- 4. Для любого p и любых натуральных чисел l и m выполнены строгие включения $C_1 \subset C_{p^l} \subset CD_{p^m} \subset C$.

Доказательство.

1. Напомним, что T^e -пространство C_n порождается многочленами вида

$$c_r(n) = x_1^{n-1} y_1^{n-1} [x_1, y_1] \cdots x_r^{n-1} y_r^{n-1} [x_r, y_r], \tag{10}$$

где r = 1, 2, ...

Покажем сначала, что $C_1 \subset C_n$ для любого $n \in N$. Действительно, осуществляя подстановку $x \mapsto x+1$ в каждую переменную многочлена $c_1(n) \in C_n$ и линеаризуя, получим коммутатор $c_1(1) = [x_1, y_1]$, который лежит в C_n , и включение доказано.

Включение $C_n \subset C_1$ также имеет место. Действительно, сначала из одного коммутатора $[x_1,y_1]$ получаем произведение произвольного числа r коммутаторов, для этого в коммутаторе $[x_1,y_1]$ нужно осуществить подстановку $y_1\mapsto y_1[x_2,y_2]\cdots[x_r,y_r]$. Затем к получившемуся многочлену $[x_1,y_1]\cdots\cdots[x_r,y_r]\in C_1$ применяем подстановки: $x_j\mapsto x_j^n,y_j\mapsto y_j^n,\ j=\overline{1,r}$. В итоге, используя следующее соотношение

$$[x^{n}, y] = nx^{n-1}[x, y], \tag{11}$$

справедливость которого несложно установить прямым вычислением, получаем многочлен $n^{2r}c_r(n)$. Из условия (n,p)=1 имеем $c_r(n)\in C_1$ для любого $r\in N$, значит $C_n\subset C_1$. Из доказанных включений следует, что $C_n=C_1=\{c_1(1)\}^{T^e}=\{[x_1,y_1]\}^{T^e}$.

Итак, в случае (n,p)=1 справедливы равенства $D_n=D_1$ (см. пункт 3 данной работы) и $C_n=C_1$. Отсюда, как нетрудно видеть, следует, что $CD_n=CD_1=C=([x_1,y_1])^{T^e}$.

2. Докажем, что $C_n\subset C_{p^l}$. Применим к многочлену (10) при $n=p^l$ серию подстановок: $x_i\mapsto x_i^{n_1},y_i\mapsto y_i^{n_1},i=1,2,\ldots,r,\quad r\in N$. После указанной замены и применения равенства (11) получим многочлен $n_1^{2r}c_r(n)$. По условию $(n_1,p)=1$, значит $c_r(n)\in C_{p^l}$ для любого $r\in N$, и включение доказано.

Наконец, $C_{p^l} \subset C_n$. Действительно, применим подстановку $x \mapsto x+1$ к каждой из входящих в многочлен $c_r(n) \in C_n$, $r \in N$, переменной и выделим полиоднородный многочлен степени p^l по всем переменным, получим многочлен, равный $B^{2r}c_r(p^l)$, где

$$B = \binom{n-1}{p^l-1} = \binom{p^l n_1 - 1}{p^l-1} = \frac{p^l n_1 - 1}{p^l-1} \cdot \frac{p^l n_1 - 2}{p^l-2} \cdot \dots \cdot \frac{p^l n_1 - 1 - (p^l-2)}{p^l-1 - (p^l-2)}.$$

Отсюда легко видеть, что B не делится на p в силу рассуждений, аналогичных приведенным в доказательстве утверждения (1) теоремы 3. Следовательно, $c_r(p^l) \in C_n$ для любого $r \in N$. Это означает, что верно указанное выше включение, значит имеет место первое равенство.

Из того, что $D_n=D_{p^l}$ (см. утверждение (1) теоремы 3) и $C_n=C_{p^l}$, как нетрудно видеть, следует $CD_n=CD_{p^l}$.

Из следствий 1 и 2 вытекает, что T^e -пространства C_{p^l} и CD_{p^l} бесконечно базируемы.

3. Если l < m, то $C_{p^l} \subset C_{p^m}$. В самом деле, применим подстановку $x \mapsto x+1$ к каждой из входящих в многочлен $c_r(p^m) \in C_{p^m}$, $r \in N$, переменной и выделим полиоднородный многочлен степени p^l по всем переменным, получим многочлен, равный $B^{2r}c_r(p^l)$, где

$$B = {p^m - 1 \choose p^l - 1} = \frac{p^m - 1}{p^l - 1} \cdot \frac{p^m - 2}{p^l - 2} \cdot \dots \cdot \frac{p^m - 1 - (p^l - 2)}{p^l - 1 - (p^l - 2)}.$$

Отсюда легко видеть, что B не делится на p в силу рассуждений, аналогичных приведенным в доказательстве утверждения (1) теоремы 3. Следовательно, $c_r(p^l) \in C_{p^m}$ для любого $r \in N$, и включение доказано.

Согласно предложению 1 для любого $l \in N$ $C_{p^l} \neq C_{p^{l+1}},$ откуда следует строгость включения при l < m.

Докажем, что $CD_{p^m} \subset CD_{p^l}$ при l < m. В силу $D_{p^m} = \{x_1^{p^m}\}^{T^e}$ достаточно рассматривать порождающие $g_{r,1}(p^m), r > 0$, коммутаторной компоненты CD_{p^m} . Покажем сначала справедливость включения. Для этого к многочлену $g_{r,1}(p^l), r > 0$, применим подстановку $z_1 \mapsto z_1^{p^{m-l}} x_1^{p^{m-l}-1} y_1^{p^{m-l}-1} \cdots x_r^{p^{m-l}-1} y_r^{p^{m-l}-1}$. После этой замены и использования коммутаторных соотношений получим многочлен $g_{r,1}(p^m), r > 0$. Отсюда, $CD_{p^m} \subset CD_{p^l}$ при l < m.

Рассмотрим вопрос о строгости включения. Достаточно показать, что $CD_{p^l} \neq CD_{p^{l+1}}$ для любого $l \in N$. Для этого рассмотрим многочлен $f = x_1^{p^l-1}y_1^{p^l-1}[x_1,y_1]z_1^{p^l} \in CD_{p^l}$. Предположим, что f принадлежит T^e -пространству $CD_{p^{l+1}}$, порожденному множеством многочленов вида

$$\{x_1^{p^{l+1}-1}y_1^{p^{l+1}-1}[x_1,y_1]\dots x_i^{p^{l+1}-1}y_i^{p^{l+1}-1}[x_i,y_i]z_1^{p^{l+1}}\mid i=1,2,\ldots\}.$$
 (12)

Какими тогда могут быть подстановки? Проследим за диагональной частью $z_1^{p^{l+1}}$ многочленов (12). Согласно соотношениям Фробениуса достаточно рассмотреть либо только мономиальные подстановки, либо только подстановки элементов поля k вместо переменной z_1 многочленов (12). Если вместо переменной z_1 подставить некоторый одночлен $u \in F^{(3)}$, то это даст не менее p^{l+1} вхождения каждой из входящих в одночлен u переменных. С другой стороны, в многочлен f каждая его переменная входит с кратностью p^l . Поэтому остаются только подстановки некоторых элементов поля k вместо переменной z_1 многочленов (12). Тогда

$$f \in \{x_1^{p^{l+1}-1}y_1^{p^{l+1}-1}[x_1, y_1] \dots x_i^{p^{l+1}-1}y_i^{p^{l+1}-1}[x_i, y_i] \mid i \geqslant 1\}^{T^e} = C_{p^{l+1}},$$

Т.к. подстановкой $z_1\mapsto x_1^{p^2-1}y_1^{p^2-1}$ из многочлена f получается многочлен $g=x_1^{p^{l+2}-1}y_1^{p^{l+2}-1}[x_1,y_1],$ то, в частности, $g\in C_{p^{l+1}},$ что противоречит лемме 4. Из утверждения (3) данной теоремы и $C_{p^l}\subset CD_{p^l}$ (см. предложение 1) вытекает следующая диаграмма строгих включений:

$$\begin{array}{ccccc} C_p &\subset & C_{p^2} \subset & \dots &\subset & C_{p^l} \subset \dots \\ & \cap & & \cap & & \cdots & & \cap \\ CD_p \supset CD_{p^2} \supset & \dots & \supset CD_{p^l} \supset \dots \end{array}$$

Из этой диаграммы следует, что для любых l и m имеют место строгие включения $C_{p^l}\subset CD_{p^m}.$

Выше уже отмечалось, что $C_1 \subset C_{p^l}$. Включение $CD_{p^m} \subset C$ очевидно, т.к. T^e -идеал C содержит многочлен [x,y]z. Строгость этих включений следует из конечной порожденности T^e -пространств C_1 и C и бесконечной базируемости T^e -пространств C_{p^l} и CD_{p^m} . Теорема 4 доказана.

Замечание 3. Из соотношений I следует, что $W_n = CD_n + D_n$. В случае $n = p^l n_1, (n_1, p) = 1, \ l \in N$, было показано, что $D_n = D_{p^l}, \ CD_n = CD_{p^l}$ (см. утверждение (1) теоремы 3 и утверждение (2) теоремы 4). Тогда из утверждения (1) теоремы 2 о разложении kT^e -модуля W_{p^l} в прямую сумму $W_{p^l} = CD_{p^l} \oplus D_{p^l}$ следует равенство $W_n = W_{p^l}$ для любого простого числа p и любого $l \in N$, кроме $p = 2, \ l = 1$.

Таким образом, частичный ответ на (p,n)-проблему, о которой говорилось во введении, следующий.

- 1) Ecnu(n, p) = 1, $mo W_n = F^{(3)}$.
- 2) Если $n = p^l n_1$, $(n_1, p) = 1$, $l \in N$, кроме случая p = 2, l = 1, то T^e -пространство $W_n = W_{p^l}$ имеет следующую бесконечную неприводимую систему порождающих:

$$\{x_1^{p^l}, z_1^{p^l}, x_1^{p^l-1}, y_1^{p^l-1}, x_1, y_1\}, \dots, z_1^{p^l}, x_1^{p^l-1}, x_1^{p^l-1}, x_1, y_1\}, \dots, x_i^{p^l-1}, x_i^{p^l-1}, x_i^{p^l-1}, x_i^{p^l-1}, \dots\}$$

3) Ecau $p=2, l=1, mo\ W_n=W_2=D_2=\{x_1^2,\ldots,x_1^2\cdots x_i^2,\ldots\}^{T^e}.$

Остается более детально изучить kT^e -модульное строение пространства $W_{n^l}.$

5. Диаграммы включений, факторпространства

Резюмируя все выше сказанное, можно построить следующие диаграммы строгих включений.

I. Пусть p — любое простое число.

Если (n, p) = 1, то

$$D_n = F^{(3)} \supset CD_n = CD_1 = ([x, y])^T = C \supset C_n = C_1 = \{[x, y]\}^T.$$

Для степеней p имеем:

$$\begin{split} D_p\supset\ldots\supset D_{p^l}\supset\ldots;\cap D_{p^l}=0; C\cap D_{p^l}=0 \ \text{при любом}\ l>1; \\ C_1\subset C_p\subset\ldots\subset C_{p^l}\subset\ldots\subset\ldots\subset CD_{p^l}\subset\ldots\subset CD_p\subset C. \end{split}$$

II. Если p > 2, то $C \cap D_{p^l} = 0$ при любом $l \in N$.

III. Если p=2, то

$$C_1 \subset C_2 \subset \ldots \subset C_{2^l} \subset \ldots \subset \ldots \subset CD_{2^l} \subset \ldots \subset CD_2 \subset \\ \subset D_2 \supset \ldots \supset D_{2^l} \supset \ldots$$

IV.
$$W_p \supset W_{p^2} \supset \ldots \supset W_{p^l} \supset \ldots$$

В I и II пунктах диаграмм равенство $C \cap D_{p^l} = 0$ при указанных ограничениях на p и l следует из рассуждений, приведенных в доказательстве утверждения (1) теоремы 2. Последняя строка пункта I показывает, что разница между T-пространством и T-идеалом, порожденных одним и тем же элементом, весьма велика.

Случай p=2, l=1, специфичен во многом из-за того, что здесь перестают работать соотношения Фробениуса. В отличие от пунктов I и II здесь $C\cap D_2$ отлично от нуля, т.к. содержит CD_2 . Вопрос: верно ли, что $CD_2=C\cap D_2$?

В связи с построенными бесконечно возрастающими и бесконечно убывающими цепочками kT^e -модулей, возникают вопросы о строении фактор- T^e -пространств: $D_{p^l}/D_{p^{l+1}}$, $C_{p^{l+1}}/C_{p^l}$, $CD_{p^l}/CD_{p^{l+1}}$, $W_{p^l}/W_{p^{l+1}}$ и некоторых других.

Для фактор- T^e -пространства $D_{p^l}/D_{p^{l+1}}$ имеет место

Предложение 4. В бесконечной строго убывающей цепочке kT^e -модулей

$$D_p \supset \ldots \supset D_{n^l} \supset \ldots$$

для любого p и любого натурального числа l, кроме p=2, l=1, все фактор- T^e -пространства $D_{p^l}/D_{p^{l+1}}$ являются простыми и изоморфными фактор- T^e -пространству $k[y_1,\ldots,y_i,\ldots]/k[y_1^p,\ldots,y_i^p,\ldots]$. В случае p=2, l=1 T^e -пространство D_2/D_4 является бесконечно базируемым kT^e -модулем.

Доказательство. Пусть $p>2,\ l\in N$ или $p=2,\ l>1.$ Тогда из доказательства утверждения (5) теоремы 3 следует, что $D_{p^l}\cong k[y_1,\ldots,y_i,\ldots]$ и $D_{p^{l+1}}\cong k[y_1^p,\ldots,y_i^p,\ldots]$ как kT^e -модули. Отсюда, изоморфны как kT^e -модули следующие фактор- T^e -пространства: $D_{p^l}/D_{p^{l+1}}$ и $k[y_1,\ldots,y_i,\ldots]/k[y_1^p,\ldots,y_i^p,\ldots]$.

Докажем, что kT^e -модуль $k[y_1,\ldots,y_i,\ldots]/k[y_1^p,\ldots,y_i^p,\ldots]$ прост. Для этого достаточно показать, что $k[y_1^p,\ldots,y_i^p,\ldots]$ — максимальный собственный kT^e -подмодуль. Очевидно, что $k[y_1^p,\ldots,y_i^p,\ldots] \subsetneq k[y_1,\ldots,y_i,\ldots]$. Допустим, что kT^e -модуль $k[y_1^p,\ldots,y_i^p,\ldots]$ не является максимальным, т.е. существует подмодуль U такой, что $k[y_1^p,\ldots,y_i^p,\ldots] \subsetneq U \subsetneq k[y_1,\ldots,y_i,\ldots]$. Отсюда, существует многочлен $f \in U$, не принадлежащий в то же время T^e -пространству $k[y_1^p,\ldots,y_i^p,\ldots]$. В силу бесконечности поля k можно считать, что $f \in k[y_1,\ldots,y_i,\ldots]$ — полиоднородный многочлен и, следовательно, есть одночлен вида:

$$\alpha y_1^{m_1} \cdots y_s^{m_s}, \tag{13}$$

где $\alpha \in k$, а числа $m_1, \ldots, m_s \in Z_+$ удовлетворяют свойству: существует хотя бы один номер j среди чисел $1, \ldots, s$ такой, что $(m_j, p) = 1$, например, j = 1. В противном случае, т.е. если $(m_j, p) \neq 1$ для любого j = 1 действительно, осуществляя в одночлен все T^e -пространство $k[y_1, \ldots, y_i, \ldots]$. Действительно, осуществляя в одночлен (13) подстановки: $y_1 \mapsto y_1 + 1$, $y_j \mapsto 1$, $y_j \mapsto$

Согласно утверждению (4) теоремы 3 и замечанию 2 в случае p=2, l=1 D_2/D_4 является бесконечно базируемым kT^e -модулем. Предложение доказано.

6. Мультипликативная структура

В настоящем пункте мы рассмотрим мультипликативную структуру T^e -пространства W_n . Покажем, что W_n замкнуто относительно умножения в алгебре $F^{(3)}$. Рассмотрим произвольные n-слова u, v. Если u и v зависят от непересекающихся множеств переменных, то, очевидно, $uv \in W_n$. Если множества переменных u и v пересекаются по некоторому множеству переменных, то одночлен uv также будет принадлежать W_n . Действительно, можно заменить v на n-слово v', которое получается из v подстановкой вместо переменных, совпадающих с переменными одночлена u, других переменных, несовпадающих со всеми переменными u. Тогда $uv' \in W_n$. Отсюда, т.к. $W_n - T^e$ -пространство, подходящей подстановкой в v' получаем $uv \in W_n$. Таким образом, можно говорить о T^e -подалгебре W_n n-слов.

Интересен вопрос о структуре T^e -пространства n-слов как T^e -подалгебры в $F^{(3)}$, а также о строении алгебры $F^{(3)}$ как W_n -модуля. Мы уже отмечали, что если (n,p)=1, то $W_n=F^{(3)}=D_1$. Если же $n=p^ln_1$, где $l\geqslant 1$, $(n_1,p)=1$, то $W_n=W_{p^l}$.

Структуру T^e -алгебры W_{p^l} проясняет следующая

Теорема 5. Алгебра W_{p^l} коммутативна, причем во всех случаях, кроме $p=2,\ l=1,$ она раскладывается в прямую сумму T^e -пространств:

 $W_{p^l}=CD_{p^l}\oplus D_{p^l}$, где T^e -алгебра D_{p^l} изоморфна T^e -алгебре коммутативных многочленов с естественной T^e -структурой и, следовательно, является нетеровым T^e -пространством, а CD_{p^l} — радикал алгебры W_{p^l} , являющийся ненильпотентной ниль-алгеброй индекса p, бесконечно базируемой, как T^e -пространство.

Доказательство. Из коммутаторных соотношений следует, что алгебра W_{p^l} коммутативна для любых значений p и l.

Согласно утверждению (1) теоремы 2 для T^e -алгебры W_{p^l} имеет место разложение в прямую сумму указанных T^e -подпространств во всех случая, кроме $p=2,\ l=1.$

Используя те же соображения, что и в доказательстве замкнутости W_n , нетрудно проверить, что $D_{p^l}-T^e$ -подалгебра алгебры $F^{(3)}$, а CD_{p^l} есть T^e -идеал алгебры W_{p^l} . Из утверждения (5) теоремы 3 следует, что во всех случаях, кроме $p=2,\ l=1,\ T^e$ -алгебра D_{p^l} изоморфна T^e -алгебре коммутативных многочленов с естественным действием полугруппы T^e , и, следовательно, является нетеровым T^e -пространством.

Рассмотрим T^e -алгебру CD_{p^l} . Из первого коммутаторного соотношения следует, что $(g_{r,s}(p^l))^2=0$, при r>0, $s\geqslant 0$. Следовательно, если f_1,f_2,\ldots,f_m — многочлены, получающиеся из системы $\{g_{r,s}(p^l)\mid r>0\}$ с помощью подстановок и k-линейных действий, то в силу соотношений Фробениуса для любых $\lambda_1,\lambda_2,\ldots,\lambda_m\in k$ имеют место равенства:

$$(\lambda_1 f_1 + \lambda_2 f_2 + \ldots + \lambda_m f_m)^p = \lambda_1^p f_1^p + \lambda_2^p f_2^p + \ldots + \lambda_m^p f_m^p = 0,$$

т.е. T^e -алгебра CD_{p^l} является ниль-алгеброй индекса p.

Т.к. согласно лемме 3 $[x_1,x_2]\dots[x_{i-1},x_i]\neq 0$ в алгебре $F^{(3)}$, и все коммутаторы $[x_{j-1},x_j]$ (в силу включения $C_1\subset CD_n$ для любого $n\in N$) лежат в CD_{p^l} , то ниль-алгебра CD_{p^l} не нильпотентна.

Нетрудно видеть, что коммутативная ниль-алгебра CD_{p^l} есть нильидеал алгебры W_{p^l} , причем факторалгебра W_{p^l}/CD_{p^l} совпадает с точностью до изоморфизма с алгеброй коммутативных многочленов. Таким образом, CD_{p^l} — радикал алгебры W_{p^l} .

В теореме 4 было установлено, что CD_{p^l} является бесконечно базируемым T^e -пространством. Теорема 5 доказана.

В случае $p=2,\ l=1$ о строении коммутативной алгебры W_2 как T^e -пространстве сказано в утверждении (2) теоремы 2.

Как k-алгебра T^e -пространство $W_2 = k[x_1^2, \ldots, x_i^2, \ldots]$, очевидно, изоморфно алгебре коммутативных многочленов $k[y_1, \ldots, y_i, \ldots]$. Однако действие алгебры kT^e на W_2 не индуцировано естественными подстановками на алгебре многочленов, как это имеет место на алгебрах W_{2^l} , $l=2,3,\ldots,W_{p^l}$, p>2, $l=1,2,\ldots$ (что, как мы уже отмечали, объясняется соотношениями Фробениуса).

Интересно, что в характеристике 2 алгебра коммутативных многочленов $k[y_1, \ldots, y_i, \ldots]$ может быть наделена структурой T^e -алгебры двумя принци-

пиально различными способами, один из которых (естественный) приводит к нетеровости (см. [14]), а другой (через изоморфизм с D_2) — к бесконечной базируемости (см. [6]).

Как нетрудно проверить, пользуясь коммутаторными соотношениями, T^e -пространство W_p лежит в центре $ZF^{(3)}$ алгебры $F^{(3)}$. Возникает вопрос: совпадают ли W_p и $ZF^{(3)}$?

Этим и другим вопросам, связанным со структурой T^e -алгебры W_n , авторы планируют посвятить свои дальнейшие исследования.

Литература

- [1] Гришин, А.В. О конечной базируемости абстрактных T-пространств / А.В. Гришин. // Фундам. прикл. матем. 1995. Т. 1. № 3. С. 669–700.
- [2] Grishin, A.V. On T-spaces and their applications / A.V. Grishin, V.V. Shchigolev // Journal of Mathematical Sciences. – 2006. – V. 134. – № 1. – P. 1799–1878.
- [3] Гришин, А.В. О конечной базируемости систем обобщенных многочленов / А.В. Гришин // Изв. АН СССР. Сер. матем. 1990. Т. 54. № 5. С. 899–927.
- [4] Щиголев, В.В. Конечная базируемость T-пространств над полями нулевой характеристики / В.В. Щиголев // Известия РАН. Сер. матем. 2001. Вып. 65. № 5. С. 191—224.
- [5] Кемер, А.Р. Конечная базируемость тождеств ассоциативных алгебр / А.Р. Кемер // Алгебра и логика. 1987. Т. 5. С. 597—641.
- [6] Гришин, А.В. Примеры не конечной базируемости T-пространств и T-идеалов в характеристике 2 / А.В. Гришин // Фундам. прикл. матем. 1999. T.5. C.~101–118.
- [7] Grishin, A.V. On non-spechtiannes of associative rings which satisfy the identity $x^{32} = 0$ / A.V. Grishin // Electron. Res. Announ. Amer. Math. Soc. 6.
- [8] Щиголев, В.В. Примеры бесконечно базируемых T-пространств / В.В. Щиголев // Матем. сб. 2000. Т. 191. С. 143–160.
- [9] Щиголев, В.В. Примеры бесконечно базируемых T-идеалов / В.В. Щиголев // Фундам. прикл. матем. 1999. Т. 5. № 1. С. 307—312.
- [10] Белов, А.Я. О нешпехтовых многообразиях / А.Я. Белов // Фундам. прикл. матем. 1999. Т. 5. № 1. С. 47–66.
- [11] Аладова, Е.В. T-пространства. История вопроса, приложения и последние результаты / Е.В. Аладова, А.В. Гришин, Е.А. Киреева // Чебышевский сб. 2004. Т.5. Вып. 4(12). С. 39—57.
- [12] Гришин, А.В. О коразмерностях в пространствах 2-слов над полем характеристики 2 и свойствах экстремальности / А.В. Гришин, С.В. Урбаханов // Чебышевский сб. 2002. Т. 3. Вып. 2(4). С. 34–42.

- [13] Гришин, А.В. Структурные и алгоритмические вопросы в T-пространствах над полем характеристики p>0 / А.В. Гришин // УМН. 2005. Т. 60. № 3. С. 175—176.
- [14] Grishin, A.V. On the finite basis property of T-spaces over a field of finite characteristic / Proc. of Moscow—Tainan algebraic workshop. – 1994. – P. 225–227.
- [15] Щиголев, В.В. Бесконечно базируемые T-пространства и T-идеалы: дис. канд. ... физ.-мат. наук / В.В. Щиголев. М.: МГУ, 2002.

Поступила в редакцию 17/IX/2007; в окончательном варианте — 17/IX/2007.

ON THE (p, n)-PROBLEM

© 2007 A.V. Grishin, L.M. Tsybulya²

In the paper the structure of the unitary closed T-space W_n generated by n-words in the relatively free algebra $F^{(3)} = F/I$ where k is an infinite field of characteristic p > 0 and I is the T-ideal generated by the polynomial $[[x_1, x_2], x_3]$ is studied. An infinite irreducible system of generators is found in W_n . In this connection infinite chains of the infinitely based T-subspaces in W_n are considered. The specific character of the case p=2 is shown. Finally the multiplicative structure of the T-space W_n is studied.

Paper received 17/IX/2007. Paper accepted 17/IX/2007.

²Grishin Alexandr Vladimirovich (alex@grishin.mccme.ru), Tsybulya Liliya Mikhaylovna, Dept. of Algebra, Moscow Pedagogical State University, Moscow, 107140, Russia.