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BASE ISOLATION FROM SEISMIC WAVES
BY A VISCOELASTIC LAYER

© 2007  M.A.Sumbatyan! V.Zampoli, M. Vaccaro?

In the present paper we study harmonic oscillations of elastic rec-
tangle above a viscoelastic layered half-space. The latter consists of an
elastic half-space to which a viscoelastic layer is embedded at a certain
depth. By combining Fourier integral transform in the half-space and
series representation of the solution in the rectangle the problem is re-
duced to an integral equation over the base of the rectangle. By solving
this integral equation we investigate the possibility of base isolation in
dependence upon viscoelastic properties of the intermediate layer as well
as upon geometrical and physical parameters of the materials.

1. Introduction

The importance of the problem about base isolation of constructions in
seismic zones is very important both from practical and theoretical points of
view. Various approaches are applied to this problem, and one of the most
efficient method in the engineering practice is protection of the constructions
by some damping materials embedded in the soil foundation. A good survey
to the problem is given in [1].

The importance of the problem of base isolation can be understood follow-
ing the survey of such works as [1-3]. Some interesting results can be found in
[4, 5]. In the paper of de la Cruz, Hube, and Spanos [5] the authors continue
to develop the geophysics model of porous elastic media previously studied in
their work [6]. They study the mode conversion and proportion between the
energies in the reflected and transmitted waves. In [7] the authors study the
reflection of seismic waves from the free boundary of porous foundation whose
mechanical properties are described by the Goodman—Cowin—-Nunziato model.

Analogous investigations were carried out by some authors for viscoelastic
materials. For example, in [8] there is considered an inhomogeneous viscoelastic
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layered isotropic medium, and the authors study wave propagation, reflection
and transmission in such media. Attenuation and phase shifts are also the
subjects of the study. The obtained results are valid in a wide seismic frequency
band being compared with predictions by some simpler and rougher methods.

It should be noted that some classical monographs are devoted to the gen-
eral theory of dynamic properties of viscoelastic materials, as well as to in-
teraction of such materials with seismic waves. We can refer to the book of
D.I.G. Jones [9], where the author gives the survey of various approaches to
practical structural applications. More theoretical methods to the problem in
concern are applied in [10]. For transient problems there are applied the Laplace
integral transform as well as time-domain calculations. A chapter devoted to
damping of vibrations by viscoelastic materials can be found in [11]. Finally,
general background to the problem of seismic isolation is presented in [12].
Some interesting and important results, as well as further helpful references
can be found in [13, 14| and some other articles cited there.

In this work, we study the in-plane problem connected with the presence
of a viscoelastic layer of Kelvin—Voigt type in an elastic half-space. The mod-
el is completed supposing the existence of an elastic solid placed on the free
boundary of the half-space. In particular, we investigate the displacement vec-
tor characterizing behaviour of the elastic solid, in its dependence on several
parameters.

2. Formulation of the Problem

Let us consider the two-dimensional plane-strain problem about the inci-
dence of a plane wave in an viscoelastic half-space (see Fig. 1). The half-space
consists of a homogeneous linear isotropic elastic material, where a different
viscoelastic layer of the thickness h; is placed on the depth A.

The plane-strain formulation implies the displacement vector u to be of
the form:

u(x,y,z,t) = {u(x,y, 1), uy(x,y,1),0}. (2.1)
In frames of this theory the equation of motion of the elastic medium [15]
. *u
wAu+(A+p) grad div u:pm, (2.2)

can be represented as a combination of two elastic potentials: @ and y that
is known in literature as the Lame representation [15]:

_0p Oy

) —_—

6}1 ox ’ (23)

ux_ul—ax 6}7’ uy =

—iwt —iwt

Q(x,y, 1) =e " e(x,y), y(x,y, 1) =e y(x,y),

if the process is assumed to be harmonic with respect to time, with the angular
frequency . Then Eq. (2.2) degenerates to a couple of the (wave) Helmhotlz
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equations
Ap+kgp=0, Ay + kg =0, (ky =w/c,, ks=o/cs),  (2.4)

where cf, = (\+2uw)/p and ¢?=u/p determine the longitudinal and transverse
wave speeds, respectively.

With all that the only nontrivial components of the stress tensor are

8141 8142
3y ox ) :

Ouy

oxx=on=<x+2u)%+xa—y,

Oxy =012 = M(

(2.5)
6”1

Oyy = 022 = (7\,+ 2M)Z—L;2 + }\a .
Let us assume that above the considered elastic half-space there is placed
an elastic rectangle joined with the half-space. Then the governing equations
for the rectangle have an analogous form like in Eqgs. (2.1)-(2.5). There arise
some other physical quantities which we mark by the sub- or superscript "2”.
Finally, we assume that a viscoelastic layer is placed inside the main elastic
half-space, with the constitutive equation being given by the simplest Kelv-
in—Voight model. It is known [9] that in the harmonic regime the governing
equations of such a viscoelastic media have the same form (2.1)-(2.5) as in
the elastic case, but with complex-valued physical moduli instead of real ones.
We denote the elastic moduli for the viscoelastic layer as A} and uj, namely
A = M —im, and pj = py—iny. It is clear, both physically and mathematically,
that the wave process in the viscoelastic layer is damping with distance, with
respective complex-valued wave numbers kj, and k. All physical quantities in
the viscoelastic layer are marked by the sub- or super- script ”1”. The upper
elastic layer will be marked by the number "0”.
Let us assume that a plane seismic harmonic wave is incident from below. If
the wave is longitudinal and the angle of incidence with respect to the vertical
axis is O then

inc

. ik, [x sin 0+(y+hg) cos 0
uj = sin 0 ¢rl¥ (O-+ho) cos O]

inc

”2 = cos O eik,,[x sin 0+(y+hg) cos 0] , (2.6)

u(x,y) = u"(x,y) + u*(x,y), (ho =h+hy).

The posed problem simulates the protection of the civil engineering struc-
tures from the incident seismic waves by absorbing layers.

3. Solution in the Half-Plane

Let us apply the Fourier transform along the horizontal coordinate x, which
is defined for arbitrary function f(x,y) as

00

00 . 1 )
F(s,y)=£ f(x,y)e* dx, f(x,y)=££ F(s,y)e "™*ds. 3.1

(%)
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Then equations of motion (2.4) are reduced to the ordinary differential equa-
tions with constant coefficients

@53 - (2 -)sn =0, ¥ sy -( k) =0, (32

where primes designate the derivative with respect to y. Note that these equa-
tions are valid for all domains, with respective physical parameters. Note that
tilde above any physical quantity means its Fourier transform.

The solution to Egs. (3.2) is given as follows.

1. Elastic half-space (y < —hp):

% (s5,y) = Ay (s5) PO+, Vp(s) = A[s? - K2, (3.3a)
TR (5,y) = Ay (s) eYs(S)(y+ho), s () = [§2 — k% , (3.3b)

since the diffracted wave field in the lowest domain satisfies the Helmholtz equa-

tion too. When constructing these solutions, we have taken into account that

the scattered wave field should satisfy the radiation condition as y — —oco [15].
2. Viscoelastic layer (hg =h+h; ,—hy <y < —h.):

¢ (5.) = Bi () ch[v; () 0 + )| + By ()sh vy (D v+ )], (34a)

§V (5,9) = C1 () ch [Y: () 0 + W] + C2 (s) sh [y} (5) (v + W], (3.4b)

V()= A/ —k;? . Yi(s) = /s> - k%, sh=sinh, ch=cosh. (3.4¢)

3. The upper elastic layer (-h <y <0):
¢ (s.) = D1 (s)ch [y, () y|+Da(s)shy, (s) ¥, (3.5a)

99 (s,y) = E1 (s)ch [y, (s) y]+E2(s)sh[ys(s) y]. (3.5b)

It should be noted that the unknown quantities Ai(s), Aa(s), Bi(s), Ba(s),
C1(s), Ca(s), D1(s), Dy(s), E1(s), E>(s) can be found by satisfying the boundary
conditions, which in our problem are conditions of continuity of the displace-
ment and stress fields over all interface boundaries:

Conditions of continuity at y = —hy:

W (s, y) +u (s ) =u (s, y), (3.64)
Wy (s, y) +uy (s, ) =u (s, y), (3.6b)
ol (5. y) + 055 (5. y) = o) (s, ¥, (3.6¢)
oy (5. Y)+0}5(s, y) =05 (s, ). (3.6)

Conditions of continuity at y=—-h:

WV (s, ) =ul (s, ), (3.7a)
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W) (s, y) =uy) (s, y). (3.7b)
0% (5, ¥) =0l (5, ¥), (3.7¢)
ol (s, ) =0 (s, 3). (3.7d)

If we assume for a while that the complex-valued amplitude of the surface
normal and shear stresses are certain functions o(x) and t(x), then
Conditions on the upper boundary surface at y = 0:

Og;) (s, v =0(s), (3.8a)
(s, ) =T(s). (3.8b)

It is obvious that the ten unknown quantities Ai(s) — E>(s) in can be de-
termined from the linear algebraic system of ten equations (3.6)—(3.8).

In order to satisfy conditions (3.6)—(3.8), let us write out respective physical
fields in all three domains.

The displacements and stresses in the lower elastic half-plane:

wSC (s,y) = Aj (is) /P00 4 Ayy etsOHho), (3.9a)
13" (5,3) = Arype 0 — A, (is) e, (3.90)
035 (5,3) = (L +20) {A 1727070 — 4y (is) y,eV: 00+
(3.9¢)
+A (is) [Al (is) e+ 4 Agyse\'s(“h())]} ,
ol (5.3) = W[ A1 (i5) e O — Agyets Oy
(3.9d)
+A1 (is) ypeYP(”hO) + A, (is)? eyx(”h‘))] .
The displacements and stresses in the viscoelastic layer:
u(ll) (s,y) = (is) {Blch [y; v+ h)] + Bash [y; O+ h)]}
(3.10a)
+H{C1vish[vs (v + W] + Covieh [yi (v + W]},
us” (s.y) = {Biyjsh [y v + )| + Bavieh [y (v + b)) - G10m
— (@) {Cich[y; v+ W] + Cash[y; v + )]},
0%y (5.) = +20") {[v: P {Bich|v; (v + W) |+ Boshlys, v+ 1) | -
— @)Y {Cish[v; (v + )] + Cach [vg (v + W]} +
(3.10¢)

+1" (is) ((is) {Bich v, v + )| + Bash [y, v + W[} +

Y5 {Cish [vy (v + W] + Coch [y v + W]})
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0(112) (s,y) =" ((is) Yp {Blsh [y; O+ h)] + Bych [y; O+ h)]} +
+ VP (Cich[v; (v + W] + Cash [y (v + W]} +
+(is) [y {Bish v, v + W] + Bach [y, (v + )|} -

—(@i){Cich[ys (v + W] + Cash [y (v + W]}
The displacements and stresses in the upper elastic layer

1 (s,y) = (is) [Dich (v, y) + Dash (v, )|+
+Vs [Ersh (vs y) + Exch (v y)],
uy” (s,9) = ¥p [Dish (v, ¥) + Dach (v, ¥)| -
—(is) [Eich (vs y) + Eash(vs y)],

0%y (5,3) = (L + 2w {v2 [Dich (v, ¥) + Dash (v, )] -
—(is)vs [Ersh(ys y) + Exch (s y)]} +
+1.(i5){(is) [Dich (v, ¥) + Dash (v, )]+
+Vs [Eish (v y) + Exch (v y)]},

o' (s.) = w{(is)v, [Dish (v, ¥)+ Dach(y, )|+
+7; [Erch (vs y) + Eash (v y)] +
+(is) {vp [Dish (v, y) + Dach (v, ¥)|-

—(s)[Erch(vs y) + Exsh(vs YD)
Then conditions (3.6)—(3.8) result in the following 10 x 10 system of linear
algebraic equations for the unknown coefficients:

(3.10d)

(3.11a)

(3.11b)

(3.11¢)

(3.11d)

y=—-hy:
(is) Ay+vy, Ay —(is)ch (v} hy) By + (is)sh(y, i) Bo+ 120
+yish (v; h1) Cy = yich (v; hi)Cy = —2msin© (s -k, sin0), (12
Yp A1 = (is) Ay —vish(ys ) By +vich(vh i) By+ -
+(is)ch(y; hy) Cy —(is)sh(y; hy) Cy = =2mcos 03(s — k, sin 0), (120
[(7\ +2u) yf, - 7\s2]A1 — (is) Y520l —
- [()»* + 2M*)y12) - k*sz] ch (y;hl) B+ G120

+|O +20) v = W] sh (v, ) Bi-

—(is) Y% 2Wsh(Y: hy)Cy + (is)y: 2wch(v: hy) Cy = 555,
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pL[Z(is) Yp Al +(yf+s2) Az] -

—w* (=2(is) vysh(y, ) Bi+2(s) vych(v) 1) Ba+

+(is)sh(yp h) D2 +vssh(ys k) Ey—vych(ys h)Ey =0,

y=-h:
(is) By+v; Ca—(is)ch(y, h)Di+

vy Ba—(is) Ci—ypsh(y, h)Di-

| +20) v = 5| By -2 Gis) i Co-

— |+ 2wy, = As?|ch (v, B)Di+

+|0+2w) v, - 4s?| sh (v, k) Da-
=2u(is) yssh(ys h)Ey +2u(is) vy ch(ys h) Ex =0,
w206s) vy B+ (vi2+5%) € |-

+(v2+ $)eh (v h)Cr - (v +5%)sh(y; ) Ca)

—pL{—Z(is) ypsh(y,, h) Dy +2(is) ypch(yp h)D2+

+(y§ + s2) ch (yp h) E| - (yf + s2) sh(yp h) Eg} =0,
y=0:

[0+ 20) v2 = 0s?| Dy = 20Gis) VB2 =6 (s).

w[2Gs) vsD2 + (vi + &) E1] = %(9),

_ ~inc
=0y

~Ypch(yp h) Dy + (is)ch (v, h)Ey — (is)sh(y, h)E> =0,

(3.12d)

(3.13a)

(3.13b)

(3.13¢)

(3.13¢)

(3.14a)
(3.14b)

where G(s) and T(s) are the Fourier transforms (images) of the normal and
tangential stresses at y =0, which for a while are accepted to be known.
This 10 x 10 linear algebraic system (3.12)—(3.14) has the following form

ai
asy
asy
as

S O O OO

ap
an
asy
as

SO O OO

ags
ans
asz
as3
as3
0
ans
0
0
0

aia
a4
asa
aqq
0

ae4
0

as4
0
0

ais
ass
ass
45
0

aes
0

ass
0
0

aie
aze
aze
ase
ase
0
aze
0
0
0

(=l el o)

asy
dae7
arg
agy

ag7
0

(e

asg
aes
ars
ass
0

a0,8

[l el e)

as9
ae9
ary
asg
0

ai0,9

S O OO

as,10
ae,10
ar,no
as,10
a9,10
0

Ay
Ar
B,
B
Cy
G
D,
D,
E;
E;

(3.15)
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with evident representations both for the matrix elements and for elements of
the right-hand side.

The solution to system (3.15) can be constructed with the use of Cramer’s
rule which results in the following expressions:

_ b1A17 + baAo7 + D3Az7 + DaAa7 + G (5) Ag7 + T(5) Arg7

Dy > (3.16a)
bi1A18 + byAzg + b3Asg + baAsg + G (5) Agg + T (s) A
D, = 211+ Dadas + byAss + bakas 0(s)Agg +T(s)Alos , (3.16b)
A
b1A19 + byAzg + b3Az9 + baAsg + G (5) Agg +T(5) A10,9
S , (3.16¢)
A
b1A 110+ brAs 10+ b3A3 10+ baAs 10+ G(5)Ag 10+ T(5)A
, = D1Aviot baAz 0+ bsAs o A4 410+ 0(9)49,10+ W) A10,10 , (3.16d)

where A is the principal determinant of the system. Other six unknown coef-
ficients have a form very similar to (3.16).

So far as the system (3.15) is resolved, the components of the displacement
vector in the upper elastic layer can be written as follows

i (s,y) = (is) {Dl (s) cosh [yp (s) y] + Dy () sinh [Yp (s) y]} +

© . (3.17a)
+vs  {E1(s)sinh [ys (s) y] + Eax(s) cosh[ys(s) y]},
iy (5.3) = ¥5 {D1 (9)sinh [y, () y| + Dy (s)cosh[y, (s) ¥]}- G17b)

— (i) {E1(s)cosh [y, (s) y] + Ea(s)sinh [y, (s) y]}.

This results in the following expressions on the upper boundary surface, which
are the most important quantities when arranging the coupling conditions be-
tween the vibrating foundation and the oscillating elastic rectangular solid:

i (5,0) = (is) Dy (s) +7v5(s) Ea(s),
(3.18)
i) (5,0) =y, (s) Da(s)—(is) Eqi(s).

By substituting (3.16) into (3.18) the last expressions can be rewritten in
the more concrete form

i (5,00 = f2(9)5(s) + LTS+ 05,
(3.19)
i (5,00 = /5 ()5 (5) + 3 ()F(s) + /1),

where

£ () = [isAor + 5 (9 Awg),  f5 () = [v, (5) Agg — isAog],
(3.20)
fE) = lisAiog + v (D Aol f3(5) = [vp () Arog — isAiog] -



380 M.A. Sumbatyan, V. Zampoli, M. Vaccaro

This allows us, by applying the inverse Fourier transform, to connect the
two components of the displacement and two components of the contact stress
over the base of the rectangle

ul? (x) = % f ao(?;)d?; f B fo(s) e Dgsy

+$ £ :t(E)dE I : fr(s) e_is(x_E)ds+% £ : %) evds,
(3.21)

W 0=5- [o@ae [ 0 e

i “ ® T —is(x—E) ifoo (0) —isx
+2nIar(§)dEImf2 (s) e ds+2n _Oofz (s) e "ds,

where we have taken into account that in the case, when the free surface of
the foundation is stress-free out of the construction base, functions o(x) and
t(x) are nontrivial only over the interval x € (—a,a).

4. Solution in the Elastic Rectangle

Let us pass to the equation of harmonic motion of the elastic rectangle.
The boundary conditions over the boundary faces of the rectangular domain
correspond to stress-free left, top, and right faces, and the contact conditions
over the lower face.

The dynamic problem of linear elasticity for the rectangular domain in some
cases, under special type of loading, admits exact explicit solutions in terms
of Fourier trigonometric series. This is connected with a certain combination
of normal stress and tangential displacement, or vice versa, of tangential stress
and normal displacement. For our boundary conditions when the normal and
tangential stresses are given over the full boundary the problem requires a
numerical treatment. This can be attained by various methods, the method
used in the present work is founded on Boundary Element Techniques.

Let x = (x1,x) and y = (y1,y2) denote points in the considered two-dimen-
sional space, and the full boundary of the rectangle be designated as [. Then it
is well known (see, for example, [Kupradze|) that the following Betti integral
identities are valid

e (x) =2 f T, [UY (v, 0)| - u ()i, -2 f b (x-S dl,
: g @.1)

x,yel, =l UL Ulz3Uly, k=1,2,

where [; is the left face of the rectangle, I, is its upper, I3 its right face,
respectively, and I its lower base, so that the outward normal for each part
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of the boundary contour is
Lh: m=-1,m=0,x=-a,0<y<h,

L: nm=0m=1,-a<x<ay=h,

4.2)
I3: m=1m=0x=a ,0<y<h,
ly: m=0m=-1,-a<x<a,y=0.
The two tensors arisen in Eq. (4.1) have the following form
k) — 72 —
U3 = o { v [ Yo (kpr) = Yo (ksr)] = S143 Yo (ksr)} =
1 oYy | k,r Yo (k;
- L 0 (P)_(? o (ksr) | Or k2o (k) =
4pw? | dy; or or Oyy
(4.3)

— 8jk2Yo (k1) +

Yo (kpr) ¥, k)| or or
or? or? 6y] 6y

1
- duk?

Yo (kyr) o, (ksr)} Pr }
+ - s r= |x_y|,

or or Oyi0y;

where Yy(x) is the Bessel function of the second kind and the zero’s order
called also Neumann or Weber function.
The partial derivative applied to tensor (4.3) can be found as follows

k
aU;>:_ L[5, OYolksr) Or
dym A2 YT ar Oy
|#vlkr)  vown| o o o
or3 or3 6ym Oyk 3)’ j
) “4.4)
PYo(kpr) Yok |[0r 6 Lo o
ar? ar? 3yj OymOyr  Ovi Oyndy,
Lo @) [lker) avewn] e
Oym  Oyr0y; or or OymOyi0y;
where one should take into account that
dYy (k d*Y, (k 1
o (k) = —kYy (kr) , @Yo k) _ = -k Yo(k”)——Yl (kr)|,
dr dr?
4.5)
d*Yo (kr)

-3 = —k? [——Y (kr) + — (32 —kz) Y| (kr)].
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Besides, the components of the divergence and rotor operators applied to these
tensors can be directly found in the following form

oul ouy K or
divo® = —L 4 —2 = Py (k,r)—, 4.6
o 0y> Apk? l( b )5}% (+6)
ouV  au 1 avak k
oty = 2“1 _ 1 0¥ ksr) Or =¥, (kyr) ﬁ’ (4.7a)
oy Oy  4p Or Iy 4u 0y>
oUu®  au®? 1 8Yy (ks .
oty®» =22 "t __ 1 9%y (kyr) Or _ ﬁyl (kyr) or ) (4.7b)
o 2 . or Iy 4u Oy,

Here Y;(x) is the same Neumann function of the order 1.

The following expressions for the partial derivatives of the x-to-y distance
are very helpful too, to provide efficient calculations of all quantities involved:

or _yi—X 5_2V_11_ 572_11_0’1'—)61')2
r Ty ’

6_})1' - ’ 5 aylz 8_yl 7'2
2 — PRpp— .
O _ L Or)(9r) _ _Om=Xm) iz X) (4.8)
OymOyi 1 \Oym )\ Oy r3
&r 3o (6r )2 &r 1o ( or )2
— = |-l+|—]| | —S—=—|-1+3—]|
dy?  royi Ay Aymdyi 12 0y Oym

Now let us come back to the fundamental representation (4.1). The compo-
nents of the stress tensor can be expressed in terms of the displacement tensor
in the following way

ou®
Ty[U(k) o, x)] =2p—— +An div (U®) + erot[n X rot(U(k))] =

(k) 6U(k) 6U(k)
= lzu —— + oy div (UP) + o mp | —2 - —1)
on

+
)| “4-9)
U ouyP  aul®
2 —2 4 div(U®) = 2 _ 27 |
2 A 1V(U ) W om P By, J

where i and j are unit vectors parallel to the Cartesian coordinate lines xi
and xp, respectively.
With the use of Eq.(4.9) representation (4.1) can be rewritten as follows
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ou® oUu®  oy®
e (x) = 2 f 2n— + hnydiv (UR) + | =2 = )+
. on 9y dy2

% au®  oy®
+ 20— + wmodiv (UR) - 2 1 dl.— (4.10)
W =+ Ay iv(U%) - T 2(y)p dly

2 [P o0 00+ 0 000 Tl

Iy

which in the more concrete form is equivalent to

ou gk) (9U(k)
u (x) = f 2u . n + s no|+Any

vl ouP
+ —]

a1 92
ouy o\ - oud
+ - + + +
o oy dy> 1o " 0y> =

4.11)

+)»n2

+
oy 0y>

(k) (k) (k) (k)
oo auf) | faug st L
"oy av, |I° Y

-2 f {0 0000+ U .0 T} dly.
Iy

More explicit form of these two equations can be achieved if one substitutes
here the expressions for the divergence and rotor from Egs. (4.6), (4.7):

ul(x)=2jl‘{

ould  aul ) k)
2” ny |+

or
+ Py, (k,r) 2L -
oy . 0y> duk? ( pr) oy

k, 6U(1) aU(l)
2 ul(y)+ 2u 2 n + 2 n |+
4 oy 0y2
(4.12a)
ank,% or nlk
—Y k,r) — dl,—
e ) g O d

—2f{U§”(y,x) o)+ U5 (v.x) ()}l

Iy
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ou? U ) k) or
n [+ Yilkyr) —+
( %) ? duk? : ( b ) 0y»

k, ouy  oUy
By (er)ﬁ]ul ) + | 20| =2 + —2n, |+
4 Ay o Oy>
(4.12b)
Aok or  nik; or
+—LY (kpr) — - = Vi hr) 5o 12 0 p dly =

e . 4

—2f{U§2)(y,x) o)+ U (v, %) T} dly.
Iy

Now, when all key formulas have been written out, let us estimate the
number of unknown functions and respective number of integral equations. If we
consider the set of four different intervals [y, b, I3, l4, then over these intervals
we have eight unknown Cartesian components of the displacement vector, a
couple for each interval, and the pair of contact stresses, functions o and T,
in the total —ten unknown functions on the four intervals. Eqgs. (4.12) applied
over each of these four intervals give us eight boundary integral equations. The
additional pair of integral equations is given by Eqgs. (3.21) since the interval
(—a,a) is the same as the interval l;. We thus have a system of ten boundary
integral equations for ten unknown functions.

Application of a standard numerical technique to solve this system of in-
tegral equations gives the final solution to the problem.
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