УДК 519.999

КРУЧЕНИЕ РАСТУЩЕГО ВАЛА1

© 2007 М.Н. Михин²

В работе исследована задача кручения для стареющего вязкоупругого кругового вала. Рассмотрены два варианта постановки задачи. Проанализированы основные этапы деформирования тела: до начала наращивания, в процессе и после остановки роста.

1. Постановка задачи.

Напряженно-деформированное состояние основного тела

Предположим, что в нулевой момент времени из стареющего вязкоупругого материала изготовлен круговой вал Π_1 с продольной выточкой. Поперечное сечение Ω_1 задается системой неравенств

$$x_1^2 + x_2^2 \ge b_1^2$$
, $(x_1 - a)^2 + x_2^2 \le a^2$, $(b_1 < a)$.

Границу сечения Ω_1 обозначим L_1 .

До момента загружения $\tau_0 \geqslant 0$ боковая поверхность вала свободна от напряжений. В момент приложения нагрузки τ_0 к торцам вала прикладываются усилия, статически эквивалентные паре с моментом M(t), или же задается угол поворота торцевого сечения.

В момент времени $\tau_1 \geqslant \tau_0$ к боковой поверхности вала начинается приток вещества. При этом новые приращиваемые элементы не напряжены, и момент их изготовления совпадает с моментом изготовления основного тела. Обозначим через L(t) границу поперечного сечения $\Omega(t)$

$$x_1^2 + x_2^2 \ge b^2(t)$$
, $(x_1 - a)^2 + x_2^2 \le a^2$, $(b(t) < a)$,

которая изменяется с течением времени, при этом $L(\tau_1) = L_1$ и $\Omega(\tau_1) = \Omega_1$. Граница L(t) сечения $\Omega(t)$ состоит из двух участков $L(t) = L^*(t) \cup L_{\sigma}(t)$, где

 $^{^{1} \}Pi$ редставлена доктором физико-математических наук, профессором А.В. Манжировым.

²Михин Михаил Николаевич (mmikhin@inbox.ru), кафедра высшей математики Московского государственного университета приборостроения и информатики, 107846, Россия, г. Москва, ул. Стромынка, 20.

 $L^*(t)$ — граница наращивания, контур, соответствующий малой окружности переменного радиуса b(t), при этом $L^*(t) = L^*$ при $\tau < \tau_1$; $L_{\sigma}(t)$ — граница, свободная от напряжений. Закон роста вала полностью задается функцией b(t). Естественно, что $b(\tau_1) = b_1$.

Будем также считать, что момент приложения нагрузки к приращиваемым элементам $\tau_0(x_1, x_2)$ совпадает с моментом их присоединения к растущему телу $\tau^*(x_1, x_2)$.

В момент $\tau_2 \geqslant \tau_1$ наращивание вала прекращается, и он занимает область $\Pi_2 = \Pi(\tau_2)$ с поперечным сечением $\Omega_2 = \Omega(\tau_2)$, имеющим границу $L_2 = L(\tau_2)$. К этому моменту поперечное сечение представляет собой пересечение двух кругов с радиусами a и b_2 .

Рассмотрим основные соотношения поставленной задачи на отрезке времени $t \in [\tau_0, \tau_1]$. Имеем следующую краевую задачу [1–3]: уравнения равновесия

$$\frac{\partial \sigma_{13}}{\partial x_3} = 0, \qquad \frac{\partial \sigma_{23}}{\partial x_3} = 0, \qquad \frac{\partial \sigma_{13}}{\partial x_1} + \frac{\partial \sigma_{23}}{\partial x_2} = 0; \tag{1.1}$$

соотношения между деформациями и перемещениями

$$\varepsilon_{13} = \frac{1}{2} \left(\frac{\partial u_1}{\partial x_3} + \frac{\partial u_3}{\partial x_1} \right), \qquad \varepsilon_{23} = \frac{1}{2} \left(\frac{\partial u_2}{\partial x_3} + \frac{\partial u_3}{\partial x_2} \right);$$
(1.2)

уравнения состояния

$$\sigma_{13} = 2G(I + \mathcal{N}_{\tau_0})\varepsilon_{13}, \qquad \sigma_{23} = 2G(I + \mathcal{N}_{\tau_0})\varepsilon_{23},
(I + \mathcal{N}_{\tau_0})^{-1} = (I - \mathcal{L}_{\tau_0}), \qquad \mathcal{L}_s f(t) = \int_s^t f(\tau) K_1(t, \tau) d\tau,
K_1(t, \tau) = G(\tau) \frac{\partial}{\partial \tau} [G^{-1}(\tau) + \omega(t, \tau)];$$
(1.3)

краевое условие на боковой поверхности

$$(x_1, x_2) \in L_1: \quad \sigma_{13}n_1 + \sigma_{23}n_2 = 0,$$
 (1.4)

Условие равновесия торцевого сечения Ω_1 под действием крутящего момента:

$$M(t) = \iint_{\Omega_1} (x_1 \sigma_{23} - x_2 \sigma_{13}) dx_1 dx_2, \tag{1.5}$$

где $\mathbf{n} = \{n_1, n_2\}$ — единичный вектор внешней нормали боковой поверхности бруса, G = G(t) — модуль упругомгновенной деформации при сдвиге, $K_1(t, \tau)$ и $\omega(t, \tau)$ — ядро ползучести и мера ползучести при сдвиге соответственно, I — тождественный оператор. Выше в ряде очевидных случаев аргументы опущены. Будем опускать их и далее, воспроизводя лишь в случаях, когда их отсутствие может затруднить понимание.

Подействуем оператором $(I - \mathcal{L}_{\tau_0})$ на выражения (1.1)–(1.5), содержащие напряжения σ_{13} , σ_{23} , предварительно разделив их на G. Тогда с учетом

обозначения $\sigma_{ii}^{\circ} = (I - \mathcal{L}_{\tau_0})\sigma_{ij}G^{-1}$ получим следующую краевую задачу [2, 3]:

$$\frac{\partial \sigma_{13}^{\circ}}{\partial x_{1}} + \frac{\partial \sigma_{23}^{\circ}}{\partial x_{2}} = 0;$$

$$\varepsilon_{13} = \frac{1}{2} \left(\frac{\partial u_{1}}{\partial x_{3}} + \frac{\partial u_{3}}{\partial x_{1}} \right), \qquad \varepsilon_{23} = \frac{1}{2} \left(\frac{\partial u_{2}}{\partial x_{3}} + \frac{\partial u_{3}}{\partial x_{2}} \right);$$

$$\sigma_{13}^{\circ} = 2\varepsilon_{13}, \qquad \sigma_{23}^{\circ} = 2\varepsilon_{23}, \qquad (1.6)$$

$$(x_{1}, x_{2}) \in L_{1} : \sigma_{13}^{\circ} n_{1} + \sigma_{23}^{\circ} n_{2} = 0,$$

$$M^{\circ}(t) = \iint_{\Omega_{1}} (x_{1}\sigma_{23}^{\circ} - x_{2}\sigma_{13}^{\circ}) dx_{1} dx_{2},$$

где $M^{\circ} = (\mathcal{I} - \mathcal{L}_{\tau_0})MG^{-1}$.

В краевую задачу (1.6) в отличие от задачи (1.1)–(1.5) время входит параметрически, и она математически эквивалентна краевой задаче теории упругости с параметром t.

Для величин u_1 , u_2 , u_3 , σ_{13}° и σ_{23}° справедливы формулы [3–5]

$$u_1 = -\theta(t)x_2x_3,$$
 $u_2 = \theta(t)x_3x_1,$ $u_3 = \theta(t)\varphi(x_1, x_2, \tau_1),$

$$\sigma_{13}^{\circ} = \theta(t) \left[\frac{\partial \varphi(x_1, x_2, \tau_1)}{\partial x_1} - x_2 \right], \qquad \sigma_{23}^{\circ} = \theta(t) \left[\frac{\partial \varphi(x_1, x_2, \tau_1)}{\partial x_2} + x_1 \right],$$

где $\theta(t)$ — угол закручивания (крутка), $\phi(x_1,x_2,\tau_1)$ — функция кручения, которая является гармонической в области Ω_1 и значение ее нормальной производной на контуре L_1 удовлетворяет условию

$$(x_1, x_2) \in L_1: \frac{\partial \varphi(x_1, x_2, \tau_1)}{\partial n} = x_2 n_1 - x_1 n_2.$$

Таким образом, поставленная задача кручения вала приведена к задаче Неймана для функции $\varphi(x_1,x_2,\tau_1)$ в области Ω_1 (определение в области поперечного сечения Ω_1 гармонической функции $\varphi(x_1,x_2,\tau_1)$ по заданному значению ее нормальной производной на контуре L_1).

Для нахождения функции кручения уравнение контура L_1 приведем к виду $z\overline{z} = h(z) + \overline{h(z)}$. В этом случае искомая функция кручения $\phi(x_1, x_2, \tau_1)$ является действительной частью функции F(z,t) = ih(z).

Уравнение контура L_1 , которое получается пересечением двух кругов с радиусами a и b_1 (b < a)

$$((x_1-a)^2+x_2^2-a^2)(x_1^2+x_2^2-b_1^2)=(x_1^2+x_2^2-2ax_1)(x_1^2+x_2^2-b_1^2)=0,$$

преобразуем в комплексную форму, сделав замену

$$x_1 = (z + \overline{z})/2, x_2 = -i(z - \overline{z})/2.$$

В комплексной форме уравнение контура приводится к виду

$$z\overline{z} = a(z + \overline{z}) - ab(1/z + 1/\overline{z}) + b_1^2,$$

и для комплексной функции напряжения будем иметь (несущественные для определения операторных напряжений константы опущены)

$$F(z, \tau_1) = iaz - iab_1^2/z.$$

Выражение 1/z допустимо и не содержит особенностей, т.к. точка z=0 лежит вне поперечного сечения. Отделяя действительную часть, получим функцию кручения ϕ в виде

$$\varphi(x_1, x_2, \tau_1) = -ax_2 - \frac{ab_1^2 x_2}{x_1^2 + x_2^2}.$$
(1.7)

В рассматриваемой задаче возможны два варианта постановки:

- 1. Задан момент M(t), а требуется определить напряжения σ_{ij} , перемещения u_i и крутку $\theta(t)$.
 - 2. Задана крутка $\theta(t)$, а требуется определить σ_{ij} , u_i и момент M(t). Если задана крутка $\theta(t)$, то находим величины u_i , σ_{13}° и σ_{23}°

$$u_{1} = -\theta(t)x_{2}x_{3}, \qquad u_{2} = \theta(t)x_{1}x_{3}, \qquad u_{3} = -\theta(t)\left(ax_{2} + \frac{ab_{1}^{2}x_{2}}{x_{1}^{2} + x_{2}^{2}}\right)x_{1}x_{2},$$

$$\sigma_{13}^{\circ} = \theta(t)\left[\frac{2ab_{1}^{2}x_{1}x_{2}}{(x_{1}^{2} + x_{2}^{2})^{2}} - x_{2}\right], \sigma_{23}^{\circ} = \theta(t)\left[-\frac{2ab_{1}^{2}(x_{1}^{2} - x_{2}^{2})}{(x_{1}^{2} + x_{2}^{2})^{2}} + x_{1} - a\right].$$

Используя формулу обращения

$$\sigma_{ij}(x_1, x_2, t) = G(t) \left[\sigma_{ij}^{\circ}(x_1, x_2, t) + \int_{\tau_0}^{t} \sigma_{ij}^{\circ}(x_1, x_2, t) R_1(t, \tau) d\tau \right],$$

получим истинные напряжения

$$\begin{split} \sigma_{13}(x_1,x_2,t) &= \left(\frac{2ab_1^2x_1x_2}{(x_1^2+x_2^2)^2} - x_2\right)G(t)\left[\theta(t) + \int\limits_{\tau_0}^t \theta(\tau)R_1(t,\tau)d\tau\right],\\ \sigma_{23}(x_1,x_2,t) &= \left(-\frac{2ab_1^2(x_1^2-x_2^2)}{(x_1^2+x_2^2)^2} + x_1 - a\right)G(t)\left[\theta(t) + \int\limits_{\tau_0}^t \theta(\tau)R_1(t,\tau)d\tau\right], \end{split}$$

где $R_1(t,\tau)$ — резольвента ядра $K_1(t,\tau)$. И, наконец, определим M(t) на основании первой формулы из (1.5).

При заданном моменте M(t) поступим следующим образом. Сначала находим $M^{\circ}(t)$ по формуле $M^{\circ}(t) = (\mathcal{I} - \mathcal{L}_{\tau_0})MG^{-1}$, затем находим крутку $\theta(t)$

$$\theta(t) = \frac{M^{\circ}(t)}{2a^{2}D_{1}(\tau_{1})}, \quad D_{1}(\tau_{1}) = \frac{1}{24}(\sin 4\alpha_{1} + 8\sin 2\alpha_{1} + 12\alpha_{1}) - \frac{b_{1}^{2}}{2a^{2}}(\sin 2\alpha_{1} + 2\alpha_{1}) + \frac{4b_{1}^{3}}{3a^{3}}\sin \alpha_{1} - \frac{b_{1}^{4}}{4a^{4}}\alpha_{1}, \quad \frac{b_{1}}{a} = 2\cos \alpha_{1}.$$

Теперь перемещения находим по формулам

$$u_1 = -\theta(t)x_2x_3$$
, $u_2 = \theta(t)x_1x_3$, $u_3 = -\theta(t)\left(ax_2 + \frac{ab_1^2x_2}{x_1^2 + x_2^2}\right)x_1x_2$,

а величины σ_{13}° и σ_{23}° — по формулам

$$\sigma_{13}^{\circ} = \frac{M^{\circ}(t)}{2a^{2}D_{1}} \left[\frac{2ab_{1}^{2}x_{1}x_{2}}{(x_{1}^{2} + x_{2}^{2})^{2}} - x_{2} \right], \quad \sigma_{23}^{\circ} = \frac{M^{\circ}(t)}{2a^{2}D_{1}} \left[-\frac{2ab_{1}^{2}(x_{1}^{2} - x_{2}^{2})}{(x_{1}^{2} + x_{2}^{2})^{2}} + x_{1} - a \right].$$

Используя формулу обращения, получим истинные напряжения

$$\sigma_{13}(x_1, x_2, t) = \frac{G(t)}{2a^2D_1} \left(\frac{2ab_1^2 x_1 x_2}{(x_1^2 + x_2^2)^2} - x_2 \right) \left[M^{\circ}(t) + \int_{\tau_0}^{t} M^{\circ}(\tau) R_1(t, \tau) d\tau \right] =$$

$$= \frac{M(t)}{2a^2D_1} \left(\frac{2ab_1^2 x_1 x_2}{(x_1^2 + x_2^2)^2} - x_2 \right),$$

$$\sigma_{23}(x_1, x_2, t) = \frac{G(t)}{2a^2D_1} \left(\frac{-2ab_1^2 (x_1^2 - x_2^2)}{(x_1^2 + x_2^2)^2} + x_2 - a \right) M^{\circ}(t) + \int_{\tau_0}^{t} M^{\circ}(\tau) R_1(t, \tau) d\tau \right] =$$

$$= \frac{M(t)}{2a^2D_1} \left(-\frac{2ab_1^2 (x_1^2 - x_2^2)}{(x_1^2 + x_2^2)^2} + x_1 - a \right).$$

Таким образом, задача кручения растущего вала на этапе, предшествующем его наращиванию, исследована.

2. Начально-краевая задача для непрерывно растущего тела

Рассмотрим отрезок времени $t \in [\tau_1, \tau_2]$. Тогда начально-краевая задача для растущего вала имеет вид:

$$\frac{\partial \sigma_{13}}{\partial x_{1}} + \frac{\partial \sigma_{23}}{\partial x_{2}} = 0;$$

$$D_{13} = \frac{1}{2} \left(\frac{\partial v_{1}}{\partial x_{3}} + \frac{\partial v_{3}}{\partial x_{1}} \right), \quad D_{23} = \frac{1}{2} \left(\frac{\partial v_{2}}{\partial x_{3}} + \frac{\partial v_{3}}{\partial x_{2}} \right);$$

$$\sigma_{13} = 2G(I + \mathcal{N}_{\tau_{0}(x_{1}, x_{2})})\varepsilon_{13},$$

$$\sigma_{23} = 2G(I + \mathcal{N}_{\tau_{0}(x_{1}, x_{2})})\varepsilon_{23},$$

$$\tau_{0}(x_{1}, x_{2}) = \begin{cases} \tau_{0} & \text{при} \quad (x_{1}, x_{2}) \in \Omega_{1}, \\ \tau^{*}(x_{1}, x_{2}) & \text{при} \quad (x_{1}, x_{2}) \in \Omega^{*}(t),
\end{cases}$$

$$(x_{1}, x_{2}) \in L_{\sigma}(t) : \sigma_{13}n_{1} + \sigma_{23}n_{2} = 0$$

$$(x_{1}, x_{2}) \in L^{*}(t) : \sigma_{13} = \sigma_{13}^{*}, \quad \sigma_{23} = \sigma_{23}^{*},$$

$$\sigma_{13}^{*}n_{1} + \sigma_{23}^{*}n_{2} = 0 \quad (t = \tau^{*}(x_{1}, x_{2}));$$

$$M(t) = \iint_{\Omega(t)} (x_1 \sigma_{23} - x_2 \sigma_{13}) dx_1 dx_2; \tag{2.2}$$

где $v_i = \frac{\partial u_i}{\partial t}$ — скорости перемещений, $D_{ij} = \frac{\partial \varepsilon_{ij}}{\partial t}$ — скорости деформаций, $\Omega^*(t) = \Omega(t) \backslash \Omega_1$ — образовавшаяся в процессе наращивания часть тела (дополнительное тело), $\sigma^*_{ij}(x_1, x_2) = \sigma_{ij}(x_1, x_2, \tau^*(x_1, x_2))$ — компоненты задаваемого на $L^*(t)$ полного тензора напряжений, оператор ($I - \mathcal{L}_{\tau_0(x_1, x_2)}$) и обратный к нему оператор ($I + \mathcal{N}_{\tau_0(x_1, x_2)}$) определяются из (1.3) заменой τ_0 на $\tau_0(x_1, x_2)$.

Соотношения (2.1)–(2.2) представляют собой общую безынерционную начально-краевую задачу для непрерывно растущего тела. Как показывают соотношения (2.1), исследуемый процесс наращивания новыми элементами в общем случае приводит к определяющим соотношениям, содержащим разрывы на поверхности раздела основного и дополнительных тел.

Преобразуем начально-краевую задачу для непрерывно наращиваемого вязкоупругого стареющего тела к задаче с параметром времени, по форме совпадающей с краевой задачей теории упругости. На первом этапе преобразуем задачу наращивания вязкоупругого вала к задаче наращивания упругого тела, описываемого законом Гука.

Для этого представим уравнение растущей границы $L^*(t)$ в форме

$$(x_1, x_2) \in L^*(t) : t - \tau^*(x_1, x_2) = 0,$$

где $t-\tau^*(x_1,x_2)\geqslant 0$ при $(x_1,x_2)\in\Omega(t)$ и $t-\tau^*(x_1,x_2)<0$ при $(x_1,x_2)\notin\Omega(t)$. Кроме того, $\tau^*(x_1,x_2)$ — достаточно гладкая функция, такая, что $\nabla \tau^*(x_1,x_2)\neq 0$ при $t-\tau^*(x_1,x_2)=0$ (т.е. на границе роста нет особых точек). Введем характеристическую функцию $\theta(t-\tau^*(x_1,x_2))$, равную единице в случае, когда ее аргумент больше либо равен нулю, и равную нулю при отрицательном аргументе [6]. Очевидно, что функция $\theta(t-\tau^*(x_1,x_2))$ равна единице всюду в точках растущего тела и равна нулю всюду вне его. В частности, функция $\theta(\tau_1-\tau^*(x_1,x_2))$ равна единице в точках основного тела и нулю — всюду вне его.

Теперь при помощи функции $\theta(\tau_1-\tau^*(x_1,x_2))$ оператор $(\mathcal{I}-\mathcal{L}_{\tau_0(x_1,x_2)})$ можно представить в виде

$$\begin{split} (I - \mathcal{L}_{\tau_0(x_1, x_2)}) f(t) &= (I - \mathcal{L}_{\tau^0(x_1, x_2)}) f(t) - \theta(\tau_1 - \tau^*(x_1, x_2)) \mathcal{L}_{\tau_0}^{\tau_1} f(t), \\ \mathcal{L}_{\tau_0}^{\tau_1} f(t) &= \int\limits_{\tau_0}^{\tau_1} f(\tau) K_1(t, \tau) \, d\tau, \\ \tau^0(x_1, x_2) &= \theta(\tau_1 - \tau^*(x_1, x_2)) [\tau_1 - \tau^*(x_1, x_2)] + \tau^*(x_1, x_2), \end{split}$$

причем $\tau^*(x_1, x_2) = \tau_1$ при $(x_1, x_2) \in L^*(\tau_1)$.

Подействуем оператором ($I - \mathcal{L}_{\tau_0(x_1,x_2)}$) на соотношения (2.1)–(2.2), содержащие напряжения σ_{12} , σ_{13} , предварительно разделив на G. Тогда, учиты-

вая обозначение $\sigma_{ij}^{\circ} = (I - \mathcal{L}_{\tau_0(x_1, x_2)})\sigma_{ij}G^{-1}$, получим

$$\frac{\partial \sigma_{13}^{\circ}}{\partial x_{3}} = 0, \quad \frac{\partial \sigma_{23}^{\circ}}{\partial x_{3}} = 0, \quad \frac{\partial \sigma_{13}^{\circ}}{\partial x_{1}} + \frac{\partial \sigma_{23}^{\circ}}{\partial x_{2}} = 0;$$

$$D_{11} = \frac{\partial v_{1}}{\partial x_{1}} = 0, \quad D_{22} = \frac{\partial v_{2}}{\partial x_{2}} = 0, \quad D_{33} = \frac{\partial v_{3}}{\partial x_{3}} = 0,$$

$$D_{12} = \frac{1}{2} \left(\frac{\partial v_{1}}{\partial x_{2}} + \frac{\partial v_{2}}{\partial x_{1}} \right) = 0,$$

$$D_{13} = \frac{1}{2} \left(\frac{\partial v_{1}}{\partial x_{3}} + \frac{\partial v_{3}}{\partial x_{1}} \right), \quad D_{23} = \frac{1}{2} \left(\frac{\partial v_{2}}{\partial x_{3}} + \frac{\partial v_{3}}{\partial x_{2}} \right);$$

$$\sigma_{13}^{\circ} = 2\varepsilon_{13}, \quad \sigma_{23}^{\circ} = 2\varepsilon_{23};$$

$$(x_{1}, x_{2}) \in L_{\sigma}(t) : \quad \sigma_{13}^{\circ} n_{1} + \sigma_{23}^{\circ} n_{2} = 0;$$

$$(x_{1}, x_{2}) \in L^{*}(t) : \quad \sigma_{13}^{\circ} = \sigma_{13}^{\circ *} = \sigma_{13}^{*} G^{-1}, \quad \sigma_{23}^{\circ} = \sigma_{23}^{\circ *} = \sigma_{23}^{*} G^{-1},$$

$$\sigma_{13}^{*} n_{1} + \sigma_{23}^{*} n_{2} = 0, \quad (t = \tau^{*}(x_{1}, x_{2}));$$

$$M^{\circ}(t) = \iint_{\Omega(t)} (x_{1} \sigma_{23}^{\circ} - x_{2} \sigma_{13}^{\circ}) dx_{1} dx_{2}.$$

Преобразуем начально-краевую задачу (2.3) к краевой задаче относительно скоростей деформации, скоростей перемещений и скоростей операторных напряжений. Для этого продифференцируем по t уравнения равновесия, уравнения состояния и краевое условие на неподвижной границе $L_{\sigma}(t)$. Для вывода граничного условия на границе роста $L^{*}(t)$ достаточно подействовать оператором дивергенции на начально-краевое условие на растущей границе.

В итоге получим следующую краевую задачу:

$$\frac{\partial S_{13}}{x_1} + \frac{\partial S_{23}}{x_2} = 0;$$

$$D_{13} = \frac{1}{2} \left(\frac{\partial v_1}{\partial x_3} + \frac{\partial v_3}{\partial x_1} \right), \quad D_{23} = \frac{1}{2} \left(\frac{\partial v_2}{\partial x_3} + \frac{\partial v_3}{\partial x_2} \right);$$

$$S_{13} = 2D_{13}, \quad S_{23} = 2D_{23};$$

$$(x_1, x_2) \in L(t) : S_{13}n_1 + S_{23}n_2 = 0;$$

$$\frac{dM^{\circ}(t)}{dt} = \iint_{\Omega(t)} (x_1 S_{23} - x_2 S_{13}) dx_1 dx_2,$$
(2.4)

где
$$S_{ij} = \frac{\partial \sigma_{ij}^{\circ}}{\partial t}$$
.

Легко видеть, что формулы для скоростей перемещений v_1, v_2, v_3 и ве-

личин S_{13} и S_{23} имеют следующую структуру:

$$v_1 = -\theta'_t(t)x_2x_3, \quad v_2 = \theta'_t(t)x_3x_1, \quad v_3 = \theta'_t(t)\varphi(x_1, x_2, t),$$

$$S_{13} = \theta_t'(t) \left[\frac{\partial \varphi(x_1, x_2, t)}{\partial x_1} - x_2 \right], \quad S_{23} = \theta_t'(t) \left[\frac{\partial \varphi(x_1, x_2, t)}{\partial x_2} + x_1 \right].$$

При этом функцию кручения $\varphi(x_1, x_2, t)$ можно найти из следующей краевой задачи Неймана

$$\frac{\partial^2 \varphi(x_1, x_2, t)}{\partial x_1^2} + \frac{\partial^2 \varphi(x_1, x_2, t)}{\partial x_2^2} = 0,$$

$$(x_1, x_2) \in L(t) : \frac{\partial \varphi}{\partial n} = x_2 n_1 - x_1 n_2.$$

Функция кручения $\varphi(x_1, x_2, t)$ имеет вид, аналогичный (1.7), ее можно получить формальной заменой b_1 и τ_1 функции кручения φ на b(t) и t

$$\varphi(x_1, x_2, t) = -ax_2 - \frac{ab^2(t)x_2}{x_1^2 + x_2^2}.$$

Если задана крутка $\theta(t)$, то, вычислив производную $\theta'(t)$, находим скорости перемещений v_i и величины S_{13} и S_{23} :

$$v_{1} = -\theta'_{t}(t)x_{2}x_{3}, \quad v_{2} = \theta'_{t}(t)x_{1}x_{3}, \quad v_{3} = -\theta'_{t}(t)\left(ax_{2} + \frac{ab^{2}(t)x_{2}}{x_{1}^{2} + x_{2}^{2}}\right)x_{1}x_{2},$$

$$S_{13} = \theta'_{t}(t)\left[\frac{\partial\varphi(x_{1}, x_{2}, t)}{\partial x_{1}} - x_{2}\right] = \theta'_{t}(t)\left[\frac{2ab^{2}(t)x_{1}x_{2}}{(x_{1}^{2} + x_{2}^{2})^{2}} - x_{2}\right],$$

$$S_{23} = \theta'_{t}(t)\left[\frac{\partial\varphi(x_{1}, x_{2}, t)}{\partial x_{2}} + x_{1}\right] = \theta'_{t}(t)\left[-\frac{2ab^{2}(t)(x_{1}^{2} - x_{2}^{2})}{(x_{1}^{2} + x_{2}^{2})^{2}} + x_{1} - a\right].$$

$$(2.5)$$

Истинные напряжения и перемещения восстанавливаются по следующим формулам:

$$\sigma_{ij}(x_{1}, x_{2}, t) = G(t) \left\{ \frac{\sigma_{ij}(x_{1}, x_{2}, \tau_{0}(x_{1}, x_{2}))}{G(\tau_{0}(x_{1}, x_{2}))} \left[1 + \int_{\tau_{0}(x_{1}, x_{2})}^{t} R(t, \tau) d\tau \right] + \int_{\tau_{0}(x_{1}, x_{2})}^{t} \left[S_{ij}(x_{1}, x_{2}, \tau) + \int_{\tau_{0}(x_{1}, x_{2})}^{\tau} S_{ij}(x_{1}, x_{2}, \varsigma) d\varsigma R_{ij}(t, \tau) \right] d\tau \right\},$$

$$u_{i}(x_{1}, x_{2}, t) = u_{i}(x_{1}, x_{2}, \tau_{0}(x_{1}, x_{2})) + \int_{\tau_{0}(x_{1}, x_{2})}^{t} v_{i}(x_{1}, x_{2}, \tau) d\tau.$$

$$(2.6)$$

И наконец, определим M(t) на основании (2.2).

При заданном моменте M(t) поступим следующим образом. Сначала находим $\frac{dM^{\circ}(t)}{dt}$ по формуле

$$\frac{dM^{\circ}(t)}{dt} = \frac{M'_{t}(t)}{G(t)} + \int_{\tau_{0}(x_{1},x_{2})}^{t} \frac{\partial M(t)}{\partial \tau} \frac{\partial \omega(t,\tau)}{\partial t} d\tau + M(\tau_{0}(x_{1},x_{2})) \frac{\partial \omega(t,\tau_{0}(x_{1},x_{2}))}{\partial t}.$$

Затем находим скорость крутки $\theta'(t)$

$$\begin{aligned} \theta_t'(t) &= \frac{1}{2a^2D_1(t)} \frac{M^{\circ}(t)}{dt}, \ D_1(t) &= \frac{1}{24} \left(\sin 4\alpha(t) + 8 \sin 2\alpha(t) + 12\alpha(t) \right) - \\ &- \frac{b^2(t)}{2a^2} \left(\sin 2\alpha(t) + 2\alpha(t) \right) + \frac{4b^3(t)}{3a^3} \sin \alpha(t) - \frac{b^4(t)}{4a^4} \alpha(t), \ \frac{b(t)}{a} &= 2 \cos \alpha(t). \end{aligned}$$

Скорость перемещений v_i находим по формулам (2.5), а величины S_{13} и S_{23} находим по формулам

$$\begin{split} S_{13} &= \frac{1}{2a^2D_1(t)} \left[\frac{2ab^2(t)x_1x_2}{(x_1^2 + x_2^2)^2} - x_2 \right] \frac{dM^{\circ}(t)}{dt}, \\ S_{23} &= \frac{1}{2a^2D_1(t)} \left[-\frac{2ab^2(t)(x_1^2 - x_2^2)}{(x_1^2 + x_2^2)^2} + x_1 - a \right] \frac{dM^{\circ}(t)}{dt}. \end{split}$$

Истинные напряжения и перемещения восстанавливаются по формулам (2.6), а крутку находим по формуле

$$\theta(t) = \theta(\tau_0(x_1, x_2)) + \int_{\tau_0(x_1, x_2)}^{t} \theta_{\tau}'(\tau) d\tau.$$

Таким образом, задача кручения растущего бруса на этапе его непрерывного наращивания исследована.

3. Деформирование вала после остановки наращивания

Пусть в момент времени τ_2 наращивание вала прекращается. В этот момент он занимает область Π_2 с поперечным сечением Ω_2 , ограниченным контуром L_2 , который представляет собой пересечение двух кругов с радиусами a и b_2 . В этом случае краевая задача имеет вид $(t \geqslant \tau_2)$

$$\frac{\partial \sigma_{13}}{\partial x_{1}} + \frac{\partial \sigma_{23}}{\partial x_{2}} = 0;$$

$$D_{13} = \frac{1}{2} \left(\frac{\partial v_{1}}{\partial x_{3}} + \frac{\partial v_{3}}{\partial x_{1}} \right), \quad D_{23} = \frac{1}{2} \left(\frac{\partial v_{2}}{\partial x_{3}} + \frac{\partial v_{3}}{\partial x_{2}} \right),$$

$$\sigma_{13} = 2G(I + \mathcal{N}_{\tau_{0}(x_{1}, x_{2})})\varepsilon_{13}, \sigma_{23} = 2G(I + \mathcal{N}_{\tau_{0}(x_{1}, x_{2})})\varepsilon_{23};$$

$$(x_{1}, x_{2}) \in L_{2}: \quad \sigma_{13}n_{1} + \sigma_{23}n_{2} = 0;$$

$$M(t) = \iint_{\Omega} (x_{1}\sigma_{23} - x_{2}\sigma_{13})dx_{1}dx_{2}.$$
(3.1)

Аналогично проделанному ранее можно получить следующую краевую

задачу:

$$\begin{split} \frac{\partial S_{13}}{\partial x_1} + \frac{\partial S_{23}}{\partial x_2} &= 0; \\ D_{13} &= \frac{1}{2} \left(\frac{\partial v_1}{\partial x_3} + \frac{\partial v_3}{\partial x_1} \right), \qquad D_{23} &= \frac{1}{2} \left(\frac{\partial v_2}{\partial x_3} + \frac{\partial v_3}{\partial x_2} \right), \\ S_{13} &= 2D_{13}, \quad S_{23} &= 2D_{23}; \\ (x_1, x_2) &\in L_2: \quad S_{13}n_1 + S_{23}n_2 &= 0; \\ \frac{dM^{\circ}(t)}{dt} &= \iint_{\Omega_2} (x_1 S_{23} - x_2 S_{13}) dx_1 dx_2. \end{split}$$

При этом функцию кручения $\phi(x_1, x_2, \tau_2)$ можно найти из следующей краевой задачи Неймана:

$$\frac{\partial^2 \varphi(x_1, x_2, \tau_2)}{\partial x_1^2} + \frac{\partial^2 \varphi(x_1, x_2, \tau_2)}{\partial x_2^2} = 0,$$
$$(x_1, x_2) \in L_2 : \frac{\partial \varphi}{\partial n} = x_2 n_1 - x_1 n_2.$$

Скорость перемещений v_1 , v_2 , v_3 и скорость операторных напряжений S_{13} и S_{23} имеют следующую структуру:

$$v_{1} = -\theta'_{t}(t)x_{2}x_{3}, v_{2} = \theta'_{t}(t)x_{1}x_{3}, v_{3} = \theta'_{t}(t)\varphi(x_{1}, x_{2}, \tau_{2}),$$

$$S_{13} = \theta'_{t}(t) \left[\frac{\partial \varphi(x_{1}, x_{2}, \tau_{2})}{\partial x_{1}} - x_{2} \right], S_{23} = \theta'_{t}(t) \left[\frac{\partial \varphi(x_{1}, x_{2}, \tau_{2})}{\partial x_{2}} + x_{1} \right].$$
(3.2)

Функция кручения $\varphi(x_1, x_2, \tau_2)$ имеет вид, аналогичный (1.7), ее можно получить формальной заменой b_1 и τ_1 функции кручения φ на b_2 и τ_2

$$\varphi(x_1, x_2, \tau_2) = -ax_2 - \frac{ab_2^2 x_2}{x_1^2 + x_2^2}.$$

Если задана крутка $\theta(t)$, то, вычислив производную $\theta'(t)$, находим скорости перемещений v_i и величины S_{13} и S_{23} :

$$v_{1} = -\theta'_{t}(t)x_{2}x_{3}, \quad v_{2} = \theta'_{t}(t)x_{1}x_{3}, \quad v_{3} = \theta'_{t}(t)\left(ax_{2} + \frac{ab_{2}^{2}x_{2}}{x_{1}^{2} + x_{2}^{2}}\right)x_{1}x_{2},$$

$$S_{13} = \theta'_{t}(t)\left[\frac{\partial\varphi(x_{1}, x_{2}, \tau_{2})}{\partial x_{1}} - x_{2}\right] = \theta'_{t}(t)\left[\frac{2ab_{2}^{2}x_{1}x_{2}}{(x_{1}^{2} + x_{2}^{2})^{2}} - x_{2}\right],$$

$$S_{23} = \theta'_{t}(t)\left[\frac{\partial\varphi(x_{1}, x_{2}, \tau_{2})}{\partial x_{2}} + x_{1}\right] = \theta'_{t}(t)\left[-\frac{2ab_{2}^{2}(x_{1}^{2} - x_{2}^{2})}{(x_{1}^{2} + x_{2}^{2})^{2}} + x_{1} - a\right].$$

Истинные напряжения и перемещения восстанавливаются по формулам (2.6), а момент M(t) находим на основании последней формулы задачи (3.1).

При заданном моменте M(t) поступим следующим образом. Сначала находим $\frac{dM^{\circ}(t)}{dt}$, затем скорость крутки $\theta'(t)$

$$\theta_t'(t) = \frac{1}{2a^2 D_1(\tau_2)} \frac{M^{\circ}(t)}{dt}, D_1(\tau_2) = \frac{1}{24} \left(\sin 4\alpha_2 + 8 \sin 2\alpha_2 + 12\alpha_2 \right) - \frac{b_2^2}{2a^2} \left(\sin 2\alpha_2 + 2\alpha_2 \right) + \frac{4b_2^3}{3a^3} \sin \alpha_2 - \frac{b_2^4}{4a^4} \alpha_2, \frac{b_2}{a} = 2 \cos \alpha_2.$$

Скорость перемещений v_i находим по формулам (3.2), а величины S_{13} и S_{23} находим по формулам

$$\begin{split} S_{13} &= \frac{1}{2a^2D_1(\tau_2)} \left[\frac{2ab_2^2x_1x_2}{(x_1^2 + x_2^2)^2} - x_2 \right] \frac{dM^{\circ}(t)}{dt}, \\ S_{23} &= \frac{1}{2a^2D_1(\tau_2)} \left[-\frac{2ab_2^2(x_1^2 - x_2^2)}{(x_1^2 + x_2^2)^2} + x_1 - a \right] \frac{dM^{\circ}(t)}{dt}. \end{split}$$

Истинные напряжения и перемещения восстанавливаются по формулам (2.6), а крутку находим по формуле

$$\theta(t) = \theta(\tau_2) + \int_{\tau_2}^t \theta_{\tau}'(\tau) d\tau.$$

Таким образом, решение задачи полностью завершено.

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (№.05-01-00693).

Литература

- [1] Арутюнян, Н.Х. Контактные задачи механики растущих тел / Н.Х. Арутюнян, А.В. Манжиров, В.Э. Наумов. М.: Наука, 1991. 176 с.
- [2] Манжиров, А.В. Общая безынерционная начально-краевая задача для кусочно непрерывно наращиваемого вязкоупругого стареющего тела / А.В. Манжиров // ПММ. 1995. Т. 59. Вып. 5. С. 836–848.
- [3] Манжиров, А.В. Методы теории функций комплексного переменного в механике растущих тел / А.В. Манжиров, М.Н. Михин // Вестник Самарского госуниверситета. Естественнонаучная серия. 2004. №4(34). С. 82–98.
- [4] Мусхелишвили, Н.И. Некоторые основные задачи математической теории упругости / Н.И. Мусхелишвили. М.: Изд во АН СССР, 1954. $647~\rm c.$
- [5] Арутюнян, Н.Х. Кручение упругих тел / Н.Х. Арутюнян, Б.Л. Абрамян. М.: Физматгиз, 1963. 686 с.

[6] Обобщенные функции и действия над ними. – М.: Физматгиз, 1958. – 439 с.

Поступила в редакцию 15/V/2007; в окончательном варианте — 15/V/2007.

TORSION OF GROWING SHAFTS³

© 2007 M.N. Mikhin,⁴

In the paper the theory of torsion problem of aging viscoelastic round shafts is studied. Two methods for problem setting are considered. The main stages of solid deformation are analyzed: before the beginning of growing, during the process and after the growing stage.

Paper received 15/V/2007. Paper accepted 15/V/2007.

³Communicated by Dr. Sci. (Phys. & Math.) Prof. A.V. Manzhirov.

⁴Mikhin Mikhail Nickolayevich (mmikhin@inbox.ru), Dept. of Higher Mathematics, Moscow State University of Engineering and Computer Science, Moscow, 107846, Russia.