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ON DETERMINATION OF LINEAR FREQUENCIES
OF BENDING VIBRATIONS OF PIEZOELECTRIC SHELLS
AND PLATES BY EXACT AND AVERAGED TREATMENT

© 2007  A.G.Bagdoev, A.V.Vardanyan, S.V.Vardanyan!

In this paper the derivation and numerical solution of disspersion
relations for frequencies of free bending vibrations for piezoelectric cylin-
drical thin shells with longitudinal polarization and plates with normal
polarization is made. Solution is done by exact space treatment and by
Kirchhoff hypothesis. Comparision of obtained tables shows that frequen-
cies by exact and based on Kirchhoff hypothesis are quite different.

Introduction

The bending vibrations of magnetoelastic shells and plates by averaged
treatment based on classic theory are considered in [1-5]. By the new space
treatment at first developed for elastic plates in [6], the magnetoelstic vibrations
of plates and shells are considered in [7-9|. The dispersion relation for Lamb
waves in piezoelastic strip by exact treatment is obtained in [10], [11], where
are obtained numerically five modes of mentioned waves, but is not made care-
fully investigation of solution of transcendent dispersion equation corresponding
to law of relation of frequency from wave number for bending waves for thin
plates. The above mentioned investigation is carried out analytically in [7-9]
for magnetoelastic plates and it is shown that almost for all cases the results
obtained by exact solution are distinguished essentially from averaged solution
based on Kirchhoff hypothesis, which formerly give excellent results for elas-
tic plates [6]. In present paper by space treatment of [6-11] are determined
analytically and numerically the frequencies of free bending vibrations of the
piezoelectric cylindrical shell with longitudinal polarisation and the compari-
son with averaged treatment is carried out. Besides the same investigation for
piezoelectric plate with transverse polarization is carried out and are made and
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compared calculations of frequencies by space and averaged treatment. As for
shell as for plate it is shown that Kirchhoff hypotesis for determination of free
bending vibrations frequencies for piezoelectric is not applicable.

1. Statement of problem and solution for cylindrical
shell

Let us consider the infinite cylindrical shell of small thickness 2h and
radius of middle section R made from piezoelectric with elastic constants
Ci1, Ci12, Ci3, Cag and piezomodulus €31, €33, €15 [10]. For the case of axial po-
larization of shell choosing coordinate along axis of cylinder and as radial coor-

dinate one can write the stresses and electrical induction components in shell
[10] as

Uy ou, od
orr = C11 ar +C12 , +Cy3 52 +&1—— 52
3 ou U ou, op
GZZ‘C“(ar T )+C33 5z "G
ou  Ouy aq>
= Cuu | = + =2
orz 44(62 " ar) ey (L1)
o Cip— +Cpy— +C Ouz + %
99 = C12 P 11 13 o7 €31 57’
ou  Iduy, op
elS(c’)z 8r)_£116r’
ou U ouy op
Dz‘eﬂ(ar * r) ey —eg,.

where Ur, U, are displacements components, ¢— potential of electrical field,
€11, €33 are dielectric permeabilities.

Then equations of motion and induction yield [10]

&ur 1oy up %y,
Cul— +==—=-T]+cC Cis+C
11(6r2+r6r r2)+ 4462 +(Caz + 44) 12)
2 2 ’
+(e31 + €15) —— s O
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8u, 10u, d%u, 8%ur 10y,
Cy|l—+-—|+C C C —
44(ar2 +rar)+ wop T (Ciat 4“)(araz raz)+
¢ 10¢ #’p  d%u,
+el(ar2 rar) TGz TP
(1.3)
62u2+3% . AU, 2 )azur 1aur)
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where is density. The exact particular solution of (1.2), (1.3) for propagated
along axis plane wave as in corresponding piezoelectric plate [11] and in mag-
netoelastic shell and plate [7-9] can be looked for in space treatment in form

Ej=rvj, =123,

ur = Ajly () €7 + Ky (gj) €7t + c.c,

u, = Bjlo (Ej)eikz—iwt + B’j Ko (Ej)eikz—iwt +ee., (1.4)
b= ¢j|o(s§j)eikz—imt + Ko (Ej)eikz—iwt +cc.,

where lg1, Ko1 are Bessel functions of imagine argument on is carried out
summation from 1 to 3. On account relations

19 (€) =11(8), Kq(§) = -Ka(§),
diy (§) N 1 dKy (§)

g & dg
one can from (1.2)-(1.5) obtain

(1.5)

() =10 (®). + K1 (©) = Ko
—iA; (C11v2 — Caak® + po?) + (Cu3 + Cas) v KBj+

+ (€31 + €15) vikdj = 0,

Ajvjik(Cy3 + Cas) + (C44VJZ — Ca3k? + pu)2> Bj+ (1.6)
¢; (e15v? - €3k?) = 0,

(€31 + €15) Ajvjik + Bj (€15v2 — €33k?) + ¢ (—e11v? + e33k?) = 0.

The equation for v2 is distinguished from equation of [11] for plate with normal
polarization and yields

vj = Ak, p_(”z:VZ, %:m, M=M2, %:m,
Cuk? Cu Cu Cu
Cop B 1
Cu 2 , (1.7)
o= oo G5 2 fu ki:(%ﬁels)’
€31 + €15 €31 + €15 €33 Ciiess

ke = ok?. ks = usk?, detaij]| = 0,
where
= —)\12 + U — Vz, app =ay = MZ}‘J" a3 = k%}‘j’
B2 = Wk} — 4+ V2, (18
223 = K (161 —is). @ = 1y, e = 06k s, @ = 112

For elastic case when ps = pg = k& =k = k3 = 0 (1.7), (1.8) have two roots

X83, and for piezoelectric one must seek solution of (1.7) starting from values
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1 + i
of hp =48, A3 =29, A1 = =. Denoting M = @j one can obtain from
w7 Cu
(1.6)
iAjall + Bjalz + (Pja13 =0,
iAjap1 + Bjags + @jags =0, (1.9)
iAjagy + Bjagy + gpjags =0
and [11]
IAj = ajUj. Bj =BiUj, o) =vjUj, (1.10)
where

aj (kj) = 21283 — 1382, P (7&1) = Q1213 — 1133, 1.11)
Vi (7\j) = anay, — &,. .

For A’j, —B’j, —cp] one obtains the same (1.11) equation expressed by U}.
Then (1.4) gives

U = —iOLjUj|1 (Ej)eikz_iwt - iOLjUjKl (Ej)eikz_iwt +C.C,

uz = BjUjlo (Ej)eikz_imt — BjUjKo (&) €™ + c.c.,

(631 + €15) i / .
C—ll :YUJIO(EJ)GIKZ i t_YJUJKO(EJ)elkZ i t+C.C.,

Ctes),

(1.12)

where is carried out summation on from 1 to 3. Using (1.1), (1.5) and (1.12)
one obtains

o I1(&;) ., .
Orr 11 (s, kz—imt C12 1. 1( J) kz—iwt
C13 ikz—im ’ ’ ikz—iw
+5, BiVilo (55) €1 — aUfa K (5;) €7
C12 K1 (EJ) ki C13 o
——=0jU/A; gleriot _ Z228,U7Ko (&) €40+
Cu I~ EJ Cllﬁj j O(EJ)
€31 ikz—iwt €31 ’ jkz—iot
+————Uivilg (&) € - ————UlyiKg(Ej) € +cC.C.,
€31 + €15 Ry o(%,) €31 + €15 il O(gj)
o " ikz—iw " , ikz—iw
ﬁ =njUjly (&) €™ + njUTK, (g)) € + cc,
. ueCr1
Nj = o+ Bikj + =5 =hivis
D, o oo
= t*U;l ) gkz iot t*U’K ) epkz iot .
k(ey +€15) ) 1(§J) +4Y 1(51) +CC,

. €11C11
tj = ueaj + wePjrj — ————Vjhj- 1.13
i i L — (1.13)
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The boundary conditions on shell surfaces as in case of piezoelectric plates

give [11]

orr (R+h,2)

¢(Rth2) =

The dimensionless

= O, Orz(Ri h,Z) = O,

potential ¢ (r,z1t) in dielectric out of shell satisfy the equa-

2~ 1 ot 2~
tion ZTCZP + F(j')_(rp + (;T(Zp = 0 and one can look for solution outside of shell in
form B
¢ = ¢, €K (kr) + c.c, r>R+h,
- _ 1 adkz-iot _ (1'15)
¢=0¢_€ lo(kr) +cc., r<R-h.
For [_)r = S(Z_Crp one obtains

Eﬁr = —¢, e @K, (kr) + c.c, r>R+h,

k

K (1.16)
2 Dr = d_ee O (kr) +cc, r<R-h.

The first line equations (1.14) give four equations

a,-ujlei(gji)

+OLJ'U}7»J'K:’L (ET)

‘g#
glzaJU ] éjij)—%f’]u lo (&) +
C Kil&) cC
C120€]U )\J 12(}—1) _13[51U KO( ) (1.17)

—(1-pe) Ujvilo (EF) + (1 - 1e) UjyjKo (EJ) =0,
MUl (EF) + mUIKy (§7) = 0, & = (R h) Kk,

where is carried out summation on from 1 to 3. The last conditions in (1.14)
and (1.12), (1.15) yield.

YiUilo
YiUilo

tTUjll

t}FUj|1

(57) = viViKo(§]) = d+Ko IR+ WK},

(57) = viUjKo (&) = ¢-lo{(R- )k},

&)+ UK (g )=E;%—jﬂuMKR+mM
)

(
(57) + Uik (5)) J1{(R-h)K},

B (€31 + 615)2 cl)
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or excluding of cI)_, (I)Jr

viUjlo (§F) - vjUiKo (&) =
(e31 + e15)? Ko {(R+h)K}

- U E) Uik ) i R

viUjlo (§7) - vjUKo (§7) =

(6 + 61c)? lo {(R-h) Kk}
- g ) )

(1.18)

where is carried out summation on from 1 to 3. Equations (1.17), (1.18) relate
all Uj, U} by homogeneous linear system, where determinant equation is

Iy I Iy My M; Mg
Pt Pr Pr QOFf QOFf OF
1 T2 Fgo %3 8% A4 |
P, P, Py Q Q5 Q =0, (1.19)
Ni Nz N3 AT A; A7
ND N N3 Ay Ay Ag
C12 (Eji) Ci3
I = a;Ail] - ZBBilg (EF) -
j 140 (J) CMBJO(J)
—(1-ue)vilo (& ) (1.20)
Cro K1 (Eji) Cis
MT = ajhiK] (87 ) + =—ajhj———= + =—B;Ko (EF) +
P =K (E) + 2 M T cul (5)

+(1—ue)viKo (ET)

Pr =l (§), ©F = njKa (g5),

ey (e (e31+es) tTll(ET)
NT = yjlo (&) - o KR KRN

(9314'915)2 tJI (E) lo (k(R—h)},

£C11 |1 k(R h)

v e (er) (31 +€15)° tKa (&)
AT = 1Ko (5) - = s <o KR+ ),

(€31 4'615)2 K (E )
8C11 k(R h) k(R h)

Nj =vjlo (&]) +

A7 = Ko (E7) +

Where there is not summation by j.
We must carry out calculations for piezoelectric case (1.8), (1.19). For all values
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of constants for BaTio3 are as follows

1 5

M=z =g =1

C12 1 3 €33

_— = = =2 = — =1, ==10 1.21

Cyy 2’ U5 > U6 2’ uz > g > ( )
n

kf = -——, n=4, 50, 100.

1 300’ ’ ’

Placing A123(v) from (1.7) in (2.4), (1.19), one must solve dispersion equation

for small values of kh | ie. for h = 0.1 e¢cm, k = 0.1, 0.2, 0.3, 0.4, 0.5 1/cm,

/C
R = 10° cm and obtain tables of v = v(K) or o = k %v (k). Results are

brought in table 1.

Table 1
h=0.1, R=10°
k
n
k2 = 205 | 0! 0.2 0.3 0.4 0.5
n=4 0.0145 | 0.0102 | 0.0083 | 0.0072 | 0.0064
n=50 0.0299 | 0.02118 | 0.0173 | 0.0149 | 0.0134
n=100 | 0.0366 | 0.0259 | 0.0211 | 0.0183 | 0.0164
2. The case of elastic cylindrical shell
For elastic shell one must put
€1=0 63=0 €5=0 ¢=0. (2.1)
and take place (1.4) for ur, Uz (1.7) yields
aag — a2, = 0, (2.2)

where aj are done by (1.8) and there are two roots AJ,. The relations (1.11)
yield
o (7»]) = —apay, fj (7\1‘) = —apays, =12 (2.3)

Then one has equations (1.17) on boundary of shell in which v/ and n’jk are
given by (1.13).

In (1.17) unknown functions are . The determinant equation will give as in
(1.19) for first four lines the same form without third and sixth columns

o MM
I I; My M;
Pr PI QF of
Pl Py Q @

=0, (2.4)

+ + +
where II Ml,z’ P1,2’

127 Qf, are done in (1.20), where ps =0, pg =0.
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3. Solution for cylindrical shell based on Kirchhoff hy-
pothesis

For comparison with results of Kirchhoff hypothesis for piezoelectric shells
one can assume that

where multiplier 7! is omitted.
Then one obtains using (1.1)
Oz _ O _ €15 09
o 0z Cyq Or ’
aur €15
u=R-r)—-— u(z 3.2
o= (R-1) 50— g+ u(d. (3.2
o _ _CU  Ci3du e d¢
or Cyr Cy 0z Cuy 0z

Equations of motion are

2
00y 00tz  Opr — Ogy 0°Ur
+ + =

60r2+60_zz+%_ d%u, '
or "oz T v P
From (1.1), (3.2) one obtains
Ur C1oCy3\ 0y, C
=" (Cps— oz -
0z r ( 13 C11 ) 62( 3 C11 *

0 C

99 ( e 31 13)’

0z C11 (3-4)

o = |1 Cus 57 |1 Cut

g _ e3Cp

0z C11

Integrating (3.3) on r from R—h to R+h ;| using that on r = R£h, o;; =0, oz =
= 0 ,and multiplying of second equation (3.3) by R—h and integrating, one
obtains equations

50 1 R+h . Rth
_ U -
R+h R i (3 5)
0 f 0zdr oM R+h .
R-h _og M _ _ _
= =0, = Q M f(r R) odr,
R-h
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2

where small terms 2 as well as % in third equation are neglected, and from

] ) o2
it one obtains
2
&1 e C
Ci3 (1 —~ —Clz) e — — i [C33 13)
ou__u "\ Cu

Cu Cu Cu
= kdo sin kz. 3.6
33— Cu 33 — Cu
Substituting (3.1), (3.2), (3.6) in last equation (1.3) one obtains
1— Ci2
kA kA C
esslPA(r - R) + &3 — — €33~ Cra———=—
r R C13
by Ca-g,
0y + % g0 - . L Gy
s
Cus + €11
where ,
C
C33 _ ﬁ
Cu
3— =Cip—6€5
€33 + 6‘33—5 + ¢ Cas
Cus C§3
Cs3 — o
Vi = K 2 1 (3.8)
s €11
Cua

To simplify (3.7) one can assume that in terms with piezoelectric effects one

can neglect terms with R and one obtains equations

” e33k3A(r - R)
by — Voo = 2 (3.9)
L e
Caa
For solution of (3.9) one obtains
do (I’) = Cychvg (I’ - R) + Cyshvg (I’ - R) - XA(I’ - R) . (3.10)
For solution out of shell for potential ¢ one obtains
r>R+h, ¢ =coskzKg (kr) p.e ' + c.c.,
(3.11)

r <R—h, ¢ =coskzg (kr) p_e 't + c.c.
For induction in shell Dy in (1.1) one obtain
&5
Dy = —¢g (r) | == +e11|coskz+ c.c.
Caa
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_ 0
From continuity conditions for r =R+h of ¢ =¢ , D, = %P one obtains

or
A
C1=0, G =22, (3.12)
Vo
A A
q)oz)i—oshvo(r—R)—xA(r—R), q;oz%vg(r—R)Z. (3.13)
From (3.4), (3.5), (3.6), (3.12) one obtains
o 2h?
M = |Cgs — == [sin ka?A=——,
( 33 Cn)SI 3
R+h ik C2
fﬁﬁﬁdr = SIT:{ Z( - —;2)C11A2h—
Roh iy (3.14)
1_ Ci2
C13C12 1 . C11
—|Cy3— —Asinkz22hCi3————
( 13 Cut )R sin 13C Cfg
SO

where is used that function ¢¢ is add with respect to r — R and values of
highly order smallness on are dropped out. Substituting of (3.14) in (3.5) one
obtains

Cio\
Ci3—-Ciz—
C? h? 1 C2 ( 13 13C )
2 13 12 11
=[Ca- =B K=+ S |Cpy— =22 - 3.15
pe ( % Cn) 3 TR|TMT ey cz, (3.15)
33 Cll
and using also values (1.21),
1 21
2 _ 1,20

which in the main order coincides with dispersion relation for elastic anisotrop-
ic shell. The numerical results by (3.16) are given in table 2 calculated by
Kirchhoff hypothesis

Table 2

k 0.1 0.2 0.3 0.4 0.5
0.000957427 | 0.00216025 | 0.00457347 | 0.00804156 | 0.0125266

The comparison of table 1 and table 2 shows that the results by space
treatment are quite different form those obtained by hypothesis.
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4. Calculations of frequencies by exact solution
for piezoelectric plate

For piezoelectric strip equations of motion

A 02Uy u, 0%
%2 + U+ Mooz axoz 0,

d%u, o%u, d%u, % %
+ + Uy + U — + g —r
o2 Moz 2T s THe G

_(kzazux 0%y, a2uz) ,0%¢ 8%

=0, (4.1)

ooz e TR | T Me a2 T

For considered antisymmetric problem one has
Uy (X, 2) = Ujsh)jpzcos pX,
Uz (X, 2) = Vjchijpzsin px, (4.2)
@ (X, 2) = pchhjpzsin px,

where is carried out on j summation from 1 to 3, Substituting of (4.2) in (4.1)
for Uj, V|, ¢ one obtain homogeneous system, where determinant

det|[ay|| = 0 (4.3)
determining A,
2

A = 1— W% —v2, app = —woh, ay = agp, &3 = —h,

A = —p1 + Wh? +v2

. @3 = ush? — g, agy = KoL,
ag = ko — kah?, ags = A2 — 2.
One can write (4.2) in form [11]
Ux (X, 2) = a;jshijpzU; cos pX,
Uz (X, 2) = BjchhjpzUj sin px, (4.4)
@ (X, 2) = yjchijpzUj sin px,
where is carried out summation on j from to 3,
o] (M) = appdp3 — A13a2,
Bj (M) = @113 — a1 a3,
Vi (7\j) =apap - aiz’
potential of electric field ¢ in region out of plate |z > h can be written as

@ = pe*Psin px, (4.5)
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which satisfy the equation — + — = 0. The stress components in plate are

ox2 07
[11]
oxx = C11 pt].*Ujshkj pzsin px,
0z = Ca3 pm}‘Ujshkj pzsin px,
Oyz = Caa pn]fU jchkjpzcos px,
where there is summation on j from 1 to 3,
= —aj+ (u2 — 1) Bjhj + (1 — pe) vjrj,
" We Cis
N =aihi +pj+ —vyi, ug = —,
i ihji + Bj MlYJ w Cas
m}-k = —ugaj + %Yj)‘j + Bj)‘j-
Here there is no summation.

Boundary conditions 0z (X, +h) = 0, oy (X, +h) = 0 are satisfied by
Uj =AjUg, A1 = mpnz — mgny
A = Mg — MyNg, Ag = M — Mpy,
m; = mishi;ph, n;j = nichi;ph.
From (4.4)-(4.7) and conditions z= +h, ¢ = ¢ one obtains
e Py = vjAjUo, Y; = yjchi;ph.
Using also conditions of continuity z component of induction z= +h |
D,=D, z=+h D=5,
D, = pq;jA;jshhjpzUg sin px,
D, = +py;AjUoe™sin px.

One obtains the dispersion equation

S
Ro1(p,v) =0, Ry =Ry — S—Rl,
33

Rl YT
= A,
R, q [
where is carried out summation on j from 1 to 3,

vj = vjchhjph, of = gjshi;ph,

gj = —Yjhj — €31190ij + E33U9BjAj,

o = €31 + €15
C11S33 '
Si33 is dielectric constant for plate = <1.

Ss3

(4.6)

(4.7)

(4.8)

(4.9)

(4.10)
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5. Piezoelectric case based on Kirchhoff hypothesis

One can obtain solution for piezoelectric plate with normal polarization
based on Kirchhoff hypothesis. Equations of motion and of elastic induction

are
00yx N 00y _ pa2ux
X oz o2’
00y, . 9o, 0%,
ox oz Par
0Dy N oD, _o.
0X 0z

From [11] these equations can be written as

H2uy 82ux+ezu . Pu, o o
o2 " Maz x T o7 ooz

d%u, d%u, d%u, 62([) 9?2 )
25x02 Mg TGz Tkt sy tieg e =0,

Loxdz 2o o2 o 92 7
Ui = % U2 = —C13 + Caa Ug = % us = %8
Cit’ Cu Cit’ e+ e
s 2 Su o, (&1 +es)? 2
= > =c k = T T e k = k )
o €31 + €5 H7 Sz’ * C11S33 2= W

2
ks = usk?, & = 2P
3 = Uus Cut

Comparison of (5.1), (5.3) yields

Auy 0z  ~ 99 _ €

Oxx = Clla_ +Ci3— 57 TCug, ot on
ou, OUy
Oz = C335 + C13W +Crus— 52
Jduy Ouy op
Caa[ 22+ 22 4 crupe 2P
Oxz = 44( 9z + (9X) 11M6(9 )

3_€P+% €1 + €15 Oy (931+9153Uz
0z C11833 aX C11833 62

209 | esl+e15(% 6uz)

DZ:_

D, = —12%%¥ O\
X T M T e Ss \ oz | ox

€31 + €15 -
Cn

@ is connected with electrical potential by ¢ =

hypothesis one has
Uz = uZ(X)a Oxz ~ Oa Oz ~ 0.

(5.1)

(5.2)

(5.3)

(5.4)

@. Due to Kirchhoff

(5.5)
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From (5.4), (5.5) one can obtain relations

duc  0vz _ Cu 09
0z T X Cu'0ax
6Uz _ C]_3 aUX C]_j_ aUX
9z~ Cypox Cx't oz

OX * C44
d¢ & Ci3 €31+ €15 duy
D,=——t|1+=2 - =B =,
z 0z [ * C33 % C33 3 C11533 0X

One can look for U, and @ in form
Uz = ACOS pX, ¢ = COS Pxd; (2) .
Then (5.6) yields

Uy = ZApsin px + %uepsin pxdo (2),
Cus

6Uz C13 Cl

c C
== = — =2 2Ap? c0s pX — == =116 P’ COS PXPo — =—[u5 COS PXPY
C Cas

0z Cas 33 Cas

D; = — cos px¢y (1 + i] +
Ca3

€31 + €15 €15
ZA +
)( C11S33 C44S33

C
+ (6‘31 - ey bo (Z)) p? COS pX.

Cas

Substituting (5.7), (5.8) into (5.2) gives

~K2p?A - K p? Cu uedy + Ap’ka + ApPks C1s +
Cus Cas3
C13 Cll ’ Cll 7 ’ 7
+==——ugp’dpks + =15ty ks — Wapdpy + g’ =0,
C33 Cyg Cas

or denoting ¢’ =@

1 Cis C
o i D S~
"o 1+kE P 1+k%
3C33M5 3C33M5

The general solution of (5.9) yields

O =Cichviz— ¢

93

(5.7)

(5.9)

(5.10)
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Substituting (5.10) in (5.8) gives

= —Cyvy COS px[l + %3 ) shvyz+

Cis ) €1+€5_, 5
+ - ZAp“ COoSs px+ 5.11
(931 Cos ™) Ciisys 2P CosP (5.11)
Ci3 shviz  E%pA ] es
- — z COS pPX.
(631 Cs3 633)( Vi v CasSsa” 0P
Boundary conditions on z=h give
¢=¢, D,=D, (5.12)
Where for dielectric out of plate
_ - S
¢ = C3e P@M ¢cos px, D, = —C3S— pe P ¢os px. (5.13)
33
On account of (5.7), (5.8) and (5.10)—(5.13) one obtains
z=h,
2
A
C.chvih - Cp = Cs,
& Cis_ \e&1+es (5.14)
~Cyvi |1+ =2 |shvh ~ ey | ————hA
1V1( ’ C33] " +(e31 ngeg) C11S33 P
C13 )( Sh\/lh szA ] €15 2 S
+ e h = -C3—p.
(631 Cas Vi vZ ) C44Sgs P Se

From (5.14) it follows that

2
Clshvlh{—vl (1 + %) (631 - %633) ip—} +

Ca3 Cas C44S33 V1
Ci3 1t+es e Lp? )
+hAp? - = 5.15
P (%1 Cass %3)( C11Ss3  CusSas v (5.15)

2
= —ip(chh\/lh - Cp A],

eites  es [pP), S LpA
ol e Y2
P ( CuSss CuSsm v ) Swm 2
Ci=- - (5.16)
Ci3 es p S
shvih{—vi |1+ — - — ¢+ + —pchvih
" { Vl( * ) (631 C33 )C44S33 V1 533p "
From (5.1), neglecting of p e U and multiplying on z, after integration on
Z, one obtains
h
0 [zodz  h
-h 00y,
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and after integrating on z by part in second term one obtains

h h
M
Q= foxzdz, %— =Q, M= fzoxxdz. (5.17)
—h -h

One account boundary conditions Oy, = Oxx = 0 one obtains after integration
of second equation in (5.1)

2 2
M _0Q _, 0"

— = —= —. 5.18
o  Ox or? (5.18)
From (5.4), (5.6) one obtains
C2 AUy Cu1 €33C13) 0@
-|Cy - I e
o [ H Css) ax e31+e15( Cas )32
and substituting of (5.7), (5.8), (5.10) one obtains
Cl C C 2A
Oxx = |C11 — == (ZA+£ &5 p( “Lshy 1Z—Cp2 z)]x
C33 Cuen+es (v v (5.19)

Cyvishvyizcos px.

xpcospx+ ( _ S 13)

Substituting (5.19) in ( 7) one obtains

h
c2 ? ?
M:f (Cll——](zzA 2 ﬂ esp (Cl . _szAzz]]+
C44931+915 v

-h
Cn Ci3
_— Cyvish d
+e31+el (% 6‘33(:3) 1V1 Vlz} Z
A 2
and on account that f zshvyzdz = §v1h3 one obtains
-h

3 C2 V)
M:%cospx{pz(cn_c_”)((l_zi% €15 ]A_'_% Ci€e15 ]+
33

vi Cus €31 + €15 Cus €31 + €15
C11C1V? C 2A
1( 1—933—13) , Ci = cp

€31 + €15 Css vi

In elastic case from (5.16) one obtains C; =0 ,

2h®p? Cl,
M= 3 Acos px Cll—c—33 .

Dispersion relation can be obtained from (5.18), thus one has

2t CZ 25
hp(C )+ Cu hCp

3

_— — — | = . 2
11 tox 3 (6‘31 €33 ng) pw (5.20)
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Values of constants for BaTiO3 are
Ci1 = 1,5 101N/m?, Ci3 = 6,6 = 1019N/nm?, Csz = 1,4 = 101 N/n?,

Cus = 4,5+ 101°N/n?, Sz3 =10"°¢p/m, e3; = —4K/n?,
&3 = 17K/, e5 = 11K/n?.

Then

C13 1 C13 1 C11 C11 2

_:_a_:_’_:37_:13 :1’

Cau 2 Cg3 2 Cy Cs3 H7

€5 €33 3 2 _ N T

-3 ==-_4 == =2, kf==—, h=0,1cm, n=1,...,10.

631 > 631 ’ “‘6 25 “’5 ’ 1 3005 ’ d ’ ’ b
And from (5.20) one has

3 2
v= 1hp2 1+ 4 : (5.21)
2 1+4K2

The results of calculations by the exact treatment, made by (4.10), are brought
in (4.3) tables 3,4 and by hypothesis are done by (5.21) and are done by
table 5.

S Table 3
33
< =10
. p
K = 300 0.1 0.2 0.3 0.4 0.5
n=0.1 | 0.660153 | 0.660142 | 0.660132 | 0.660121 | 0.660111
n=1 | 0.696237 | 0.664531 | 0.716595 | 0.716833 | 0.717054
n=2 | 0.588632 | 0.588632 | 0.588632 | 0.588632 | 0.588632i
n=3 | 0.594389 | 0.503435 | 0.594389 | 0.594389 | 0.594389
n=4 | 0.720844 | 0.703199 | 0.733194 | 0.73344 | 0.733659
n=5 | 0.693198 | 0.693535 | 0.693854 | 0.694158 | 0.694447
n=10 | 0.720122 | 0.720582 | 0.720998 | 0.748948 | 0.72173
Table 4
Sy
S
p
2 n
k=205 | 01 | 02 0.3 0.4 0.5
n=0.1 | 0.588 | 0.57 | 0.5888 | 0.5889 | 0.589002
n=1 0.71 | 0.73 [ 0.7369 | 0.782 | 0.782102
n=2 | 0.58 [0.588 | 0.58863 | 0.58 | 0.5886
n=3 |0.594] 059 | 0594 | 059 | 0.5943
n=4 | 073 ] 073 ] 0736 | 073 | 0.0.7371
n=5 0.6 | 0.6i | 0.6053 | 0.605 | 0.6054
n=10 | 0.63 | 0.63 | 0.630 | 0.6307i | 0.63072
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Table 5
The Kirchhoff case table % =10
p

K= 0.1 0.2 0.3 0.4 0.5

! 300
n—0 0.005 0.01 0.015 0.02 0.025
n—=0.1 | 0.00500416 | 0.0100083 | 0.0150125 | 0.0200166 | 0.0250208
n—1 0.00504095 | 0.0100819 | 0.0151229 | 0.0201638 | 0.0252048
n—2 0.00508052 | 0.010161 | 0.0152416 | 0.0203221 | 0.0254026
n—3 0.00511878 | 0.0102376 | 0.0153563 | 0.0204751 | 0.0255939
n—4 0.0051558 | 0.0103116 | 0.0154674 | 0.0206232 | 0.025779
n=>5 0.00519164 | 0.0103833 | 0.0155749 | 0.0207666 | 0.0259582
n=10 | 0.00535504 | 0.0107101 | 0.0160651 | 0.0214202 | 0.0267752

Comparision of tables 3 and 5 shows that the solution by exact space treat-
ment essentially is distinguished from solution obtained due to Kirchhoff hy-
pothesis.

Conclusion

The derivation of disspersion relation for free bending vibrations of thin

piezoelastic cylindrical shells with longitudinal polarization and for plates with
normal polarization by exact space treatment, proposed at first for elastic plates
by V. Novatski, is given. It is done numerical solutions of obtained transcen-
dent equations. Also the same considerations are made by treatment based on
Kirchhoff hypothesis.
The table 1 corresponds to shell with radius R = 10%cm calculated by space
treatment, and table 2 by hypothesis, in the last in main order frequency does
not depend from piezoelectric properties. The results of table 1 and table 2
are quite different. Also are constructed by space treatment tables 3, 4 for
piezoelectric plates and table 5 by averaged method based on hypothesis. The
tables 3 and 5 are distinguished by several times. Thus in considered problem
as in magnetoelastic plates and shells in piezoelectricity Kirchhoff hypothesis
not applicable.
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OTIPEJAEJIEHUE JIMHENMHBIX YACTOT U3TUBHBIX
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1 TIJIACTUH TI0 TOYHOMY U OCPEJIHEHHOMY
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