УДК 543.544.45

# СОРБЦИОННЫЕ СВОЙСТВА ДИСКОТИЧЕСКОГО ЖИДКОГО КРИСТАЛЛА 2,3,6,7,10,11-ГЕК-СА(4-н-УНДЕЦИЛОКСИБЕНЗОИЛОКСИ)ТРИФЕНИЛЕНА В УСЛОВИЯХ ГАЗО-МЕЗОФАЗНОЙ ХРОМАТОГРАФИИ<sup>1</sup>

© 2006 А.А. Кудряшова, Л.А. Онучак, С.Ю. Кудряшов<sup>2</sup>, О.Б. Акопова<sup>3</sup>

В работе рассмотрена сорбция предельных и ароматических углеводородов дискотическим жидким кристаллом 2,3,6,7,10,11-гекса(4-н-ундецилоксибензоилокси)трифениленом в условиях газомезофазной хроматографии. Найдено, что сорбция немезогенов приводит к образованию анизотропного раствора с сильно выраженными отрицательными отклонениями от идеального поведения (от закона Рауля), которые усиливаются с уменьшением объема молекулы растворяющегося немезогена, а также при переходе от предельных к ароматическим углеводородам.

Жидкие кристаллы (ЖК) с плоской дискообразной формой молекул были открыты более 25 лет назад и в настоящий момент достаточно хорошо изучены с точки зрения их применения в оптике, фотофизике и технологии проводниковых и полупроводниковых приборов. Определенный практический интерес может представлять использование дискотических жидких кристаллов в хроматографии, однако сведения об этой области применения дискогенов недостаточны [1–7].

Целью данной работы являлось экспериментальное изучение сорбции из газовой фазы углеводородов различного строения дискотическим жидким кристаллом 2,3,6,7,10,11-гекса(4-н-ундецилоксибензоилокси)трифениленом (ГУОБТ) методом газовой хроматографии.

#### 1. Экспериментальная часть

Структурная формула и схематическое изображение структуры различных фаз ГУОБТ приведены на рис. 1.

Жидкий кристалл наносили на поверхность инертного твердого носителя (хромосорба W AW) из раствора в хлороформе, масса ГУОБТ составила 15,0% от массы твердого носителя. Газохроматографический эксперимент проводили на хроматографе "Цвет 100" в изотермическом режиме с использованием пламенно-ионизационного детектора и наполненной колонки (1 м×3 мм) в интервале температур

<sup>&</sup>lt;sup>1</sup>Работа выполнена при поддержке грантов № 4Е2.5К, № 67Е2.5П (по конкурсу Самарской области 2006 года) и РФФИ (грант РФФИ-Поволжье № 07-03-97618).

<sup>&</sup>lt;sup>2</sup>Кудряшова Алиса Александровна, Онучак Людмила Артемовна, Кудряшов Станислав Юрьевич, кафедра общей химии и хроматографии Самарского государственного университета, 443011, Россия, г. Самара, ул. Акад. Павлова, 1.

<sup>&</sup>lt;sup>3</sup>Акопова Ольга Борисовна (akopov@dsn.ru), Проблемная лаборатория жидких кристаллов Ивановского государственного университета, 153025, г. Иваново, ул. Ермака, 39.



Рис. 1. Схема фазовых переходов ГОУБТ (C — твердокристаллическая фаза,  $Col_{rd}$  — прямоугольная разупорядоченная колончатая мезофаза,  $N_D$  — дисконематическая мезофаза, I — изотропная фаза)

100–190°С. Удельный объем удерживания сорбатов  $V_g^T$  [8] определяли на основании измерения объемной скорости газа-носителя (азот) на входе в колонку и последующего пересчета на среднее значение этой величины внутри колонки [6].

В качестве сорбатов использовали н-алканы (с гептана по пентадекан), циклогексан, бензол и алкилбензолы (толуол, этилбензол, изомерные ксилолы). Некоторые физико-химические свойства сорбатов приведены в табл. 1.

Для области твердокристаллического состояния сорбента на основании зависимости логарифма  $V_g^T$  от обратной температуры оценивали величину изменения внутренней энергии немезогена в процессе адсорбции  $\Delta_a \overline{U}_{V,T}^o$ , численно равную теплоте адсорбции:

$$\Delta_a \overline{U}^o_{V,T} = Q_V = -R \cdot \frac{d \ln V_g^T}{d \left(1/T\right)} \tag{1}$$

Константу Генри  $K_H$  десорбции сорбатов из жидкого раствора в газовую фазу определяли из хроматографических данных по формуле:

$$K_H = \frac{RT}{V_g^T \cdot M_L},\tag{2}$$

где  $M_L$  — молекулярная масса неподвижной жидкой фазы, T — температура исследования (в данном случае — температура колонки)

Так как

$$K_H = \lim_{x_i \to 0} \left( p_i / x_i \right) = \gamma_i^{\infty} \cdot p_i^o, \tag{3}$$

то коэффициент активности сорбата в бесконечно разбавленном растворе в неподвижной жидкой фазе  $\gamma_i^{\infty}$  определяли на основе экспериментальных значений  $K_H$  и рассчитанных величин давления насыщенного пара сорбатов  $p_i^o$  при температуре исследования.

Сорбционное перераспределение сорбатов в системе "газ-неподвижная жидкая фаза" характеризовали величиной  $p_{st}/K_H$ , где  $p_{st} = 1$  атм. На основании температурной зависимости  $p_{st}/K_H$  определяли стандартные термодинамические характе-

| гоп | яризуемость | молекул, дипо         | льный мом       | <b>1ент, темпе</b> | ратура ки            | и кон      | нстанты ур | авнения <sup>1</sup> з | ависимости        |
|-----|-------------|-----------------------|-----------------|--------------------|----------------------|------------|------------|------------------------|-------------------|
|     |             | давления на           | ксыщенного      | о пара $p^o$ (     | кПа) сорба           | TOB OT TEM | пературы ( | (K)                    |                   |
| N₀  | Сорбат      | $M,  \mathrm{r/mojb}$ | $\alpha, \ Å^3$ | μ, D               | $T_b, \ {\mathbb C}$ | <i>V</i> - | -B         | С                      | $D \cdot 10^{-6}$ |
| 1   | и-Гептан    | 100,21                | 13,6            | 0                  | 98,45                | 14, 12388  | 8030,070   | 108, 14610             | 12,04855          |
| 7   | н-Октан     | 114,23                | 15,5            | 0                  | 125,67               | 7,378740   | 6981, 936  | 65,77825               | 3,380923          |
| 33  | н-Нонан     | 128,26                | 17,3            | 0                  | 150,82               | 8, 327399  | 7739,415   | 72,54661               | 3,894831          |

| тва исследованных немезогенных органических соединений – молярная масса, | ципольный момент, температура кипения и константы уравнения <sup>1</sup> зависимости | ія насыщенного пара $p^o$ (кПа) сорбатов от температуры (К) |
|--------------------------------------------------------------------------|--------------------------------------------------------------------------------------|-------------------------------------------------------------|
| Физико-химические свойства исследованных нем                             | юляризуемость молекул, дипольный момент, тел                                         | давления насыщенного пара р                                 |

Таблица 1

|                     | C              |
|---------------------|----------------|
| /kdb/)              | Defension      |
| ജ                   | <              |
| 0                   | C              |
| U.                  | _              |
| infosys.cheri       | A HILLO GO GHU |
| 2                   | ł              |
| (http:/             |                |
| $\Gamma^2$          |                |
| $T + C + D \cdot T$ | V nomina V     |
| B                   | _              |
| +                   | ~              |
| Г                   | Σ,             |
| $= A \cdot \ln a$   |                |
| °.                  |                |
| n p                 | 00             |

ы С -376Рабинович, З.А. Краткий химический справочник / З.А.Рабинович, З.Я.Хавин. – Л.: Химия, 1977. 1 1 1 1 2

101,6196

10991, 81

12,30367

235,47

0

24,6

187, 8225

15806, 55

24,9853824,792279,200978

253,58270,55

0

26,5

198,40

н-Тетрадекан н-Пентадекан Циклогексан

 $\infty$ 

<u>с</u>

н-Тридекан

н-Ундекан н-Додекан

ഹ 9

н-Декан

4

0 0

28,311,010,412,3

212, 43

84,1678,1292,14

2,6203339,4532525,7885734,95821312,16283

69,76469

8163,335

7,768817 17, 3722213,98384

174, 15

0

19,1

142, 29156, 31

134,0873112,7229

11585, 21

11200, 45

216, 32

195,94

0 0

21,022,8

> 170,34184,37

10,97405

187,8062

16463, 11

7.374814

75,65058

6354, 898

6,1984135,754912

71,10718

6281,040

8,433613

80,09 80,73

0

74,13580

6918, 798

8,795480 9,5539839,1066799,527348

110,63136, 19

 $0,36^{2}$ 

5,6531805,4036345,7489695,939742

79, 79371

7638,0827556,611 7637,951

76,86698

139, 12

 $0,36^{2}$  $0,06^{2}$  $0,52^{2}$ 

14,1

106,17

Этилбензол

13 14 1516

Бензол Толуол

10 Π 12 м-Ксилол п-Ксилол

о-Ксилол

 $0,40^{2}$ 

138, 37

79,55720

83,32184

7946, 229

10,06059

144,45

ристики сорбции  $\Delta_{sp}\overline{H}^o_{P,T}$  (энтальпию) и  $\Delta_{sp}\overline{S}^o_{P,T}$  (энтропию):

$$\ln\left(p_{st}/K_H\right) = -\frac{\Delta_{sp}\overline{H}_{P,T}^{o}}{RT} + \frac{\Delta_{sp}\overline{S}_{P,T}^{o}}{R},\tag{4}$$

откуда

$$\Delta_{sp}\overline{H}_{P,T}^{o} = -R\frac{d\ln\left(p_{st}/K_{H}\right)}{d\left(1/T\right)} \quad \text{M} \quad \Delta_{sp}\overline{S}_{P,T}^{o} = \frac{\Delta_{sp}H_{P,T}^{o}}{T} + R\ln\left(p_{st}/K_{H}\right). \tag{5}$$

Термодинамическое обоснование уравнений (4) и (5) дано в работе [9].

Из температурных зависимостей коэффициентов активности находили избыточные термодинамические функции (функции смешения)  $\overline{H}_{i}^{\infty,E}$  и  $\overline{S}_{i}^{\infty,E}$ :

$$\ln \gamma_i^{\infty} = \frac{\bar{H}_i^{E,\infty}}{RT_c} - \frac{\bar{S}_i^{E,\infty}}{R},\tag{6}$$

где  $\overline{H}_{i}^{\infty,E}$  и  $\overline{S}_{i}^{\infty,E}$  — избыточные энтальпия и энтропия сорбатов в бесконечно разбавленном растворе в ГУОБТ с упорядоченностью типа  $Col_{rd}$ .

### 2. Обсуждение результатов

На рис. 2 представлены зависимости логарифмов удельных объемов удерживания исследованных углеводородов от обратной температуры.

Как видно из рис. 2, с ростом температуры удерживание сорбатов монотонно снижается, причем при плавлении ГУОБТ не наблюдается характерного для большинства ЖК неподвижных фаз роста удерживания, связанного с переходом от адсорбционного к распределительному механизму сорбции. Можно было бы предположить, что этот эффект связан с повышенной вязкостью мезофазы  $Col_{rd}$ ГУОБТ, что должно приводить к неравновесности сорбции в динамических условиях хроматографического процесса. В связи с этим нами впервые проведены исследования по влиянию скорости газа-носителя на удерживание и размытие зон сорбатов на колонке с дискотическим ЖК. На рис. 3, а представлена зависимость высоты, эквивалентной теоретической тарелке (ВЭТТ) *н*-додекана, от объемной скорости газа-носителя (кривая Ван–Димтера), полученная при 160°С (мезофаза  $Col_{rd}$ ).

Несмотря на то, что величина H для колонки с ГУОБТ примерно в 1,8 раз выше, чем для наполненных колонок с каламитными ЖК, правая ветвь кривой Ван–Димтера достаточно пологая. Это свидетельствует о том, что при увеличении средней объемной скорости в колонке от 5 до 40 см<sup>3</sup>/мин процесс сорбционного перераспределения *н*-додекана между мезофазой  $Col_{rd}$  и газовой фазой происходит достаточно быстро и квазиравновесно. Именно поэтому удельные удерживаемые объемы в пределах погрешности эксперимента не зависят от объемной скорости газа-носителя (в диапазоне 5–40 см<sup>3</sup>/мин), а при скоростях выше 40 см<sup>3</sup>/мин наблюдается ожидаемое снижение  $V_g^T$  (рис. 3, 6). Таким образом, близость величин  $V_g^T$  в кристаллической и колончатой фазах дискотического сорбента в окрестностях точки плавления обусловлена не кинетическими, а термодинамическими факторами.

Основываясь на структуре кристаллической и колончатой фаз ГУОБТ (рис. 1) можно предположить, что механизмы сорбции в этих фазах близки, а их особенности обусловлены наличием большого свободного объема между радиально



Рис. 2. Зависимости логарифма удельных объемов удерживания сорбатов от обратной температуры (нумерация соответствует табл. 1)



Рис. 3. Зависимость ВЭТТ для *н*-додекана на наполненной колонке с ГУОБТ (1 м×3 мм) от объемной скорости газа-носителя (*a*) и удельных объемов удерживания  $V_g^T$  (*b*) *н*-додекана (1), *н*-декана (2) и этилбензола (3) от средней объемной скорости газа-носителя (азота) при 160°С (колончатая мезофаза)

расходящимися боковыми цепями молекул дискогена и между колонками, куда проникают молекулы сорбатов [11]. В таком случае наличие свободного объема в тонком слое твердокристаллического ГУОБТ вблизи поверхности межфазного раздела "кристаллический ЖК-газ" должно приводить к ослаблению притяжения молекул сорбируемых соединений к поверхности и повышению их подвижности (энтропии) в поверхностном слое, тогда как в объеме — к усилению дисперсионных сил притяжения между разнородными молекулами в растворе с упорядоченностью типа *Col<sub>rd</sub>* и сохранением достаточно высокой подвижности растворенных молекул углеводородов.

В табл. 2 приведены теплоты адсорбции (при V = const) и сорбции в фазе ГУОБТ исследованных углеводородов, рассчитанные величины теплот конденсации (160°С), а также литературные данные по теплотам адсорбции этих же веществ на углеродном адсорбенте с плоской поверхностью — графитированной термической саже (ГТС) [12].

Известно, что ГТС имеет плоскую энергетически и геометрически однородную поверхность, вследствие чего в системе "графитированная термическая сажа-адсорбат" реализуются оптимальные условия для дисперсионных взаимодействий между адсорбирующимся из газовой фазы веществом и твердым адсорбентом. Из сопоставления теплот адсорбции (табл. 2) видно, что исследованные углеводороды хуже взаимодействуют с поверхностью ГУОБТ, чем с поверхностью ГТС, очевидно, из-за особого микрорельефа поверхности ЖК, содержащей заметную долю углублений и пустот. Плавление дискотического ГУОБТ приводит к росту теплоты сорбции (по модулю); особенно заметно возрастание абсолютных значений теплот для веществ с малым объемом молекул.

Рассчитанные энтальпии (теплоты) сорбции объемом ЖК оказались выше, чем энтальпии конденсации углеводородов ( $|\Delta_{sp}\overline{H}_{P,T}^{o}| > |\Delta_{sp}H|$ ), что свидетельствует о заметном усилении энергии притяжения разнородных молекул в растворе с упорядоченностью типа  $Col_{rd}$ . Однако наличие свободного объема между радиально расходящимися боковыми цепями молекул дискотического ЖК и между колонками в меньшей степени ограничивает подвижность растворенных молекул углеводородов, чем в случае обычных изотропных растворов. Это обусловливает пониженные значения энтропии сорбции из газовой фазы  $|\Delta_{sp}\overline{S}_{P,T}^{o}|$  при достаточно высоких значениях  $|\Delta_{sp}\overline{H}_{P,T}^{o}|$ .

Представленное на рис. 4 сопоставление энтальпийного и энтропийного вкладов в константу сорбции при 160°С не противоречит сделанному выше выводу о том, что высокая сорбционная емкость ГУОБТ в колончатой мезофазе по отношению к большинству углеводородов обусловлена преобладанием энтальпийной составляющей над энтропийной.

Представленные в табл. 2 стандартные энтальпии и энтропии сорбции характеризуют изменение данных функций при переходе 1 моль сорбата, находящегося в состоянии идеального газа со стандартным давлением  $p_{st} = 1$  атм, в состояние бесконечно разбавленного раствора в жидкой неподвижной фазе.

Взаимодействия в жидком растворе можно рассматривать и с позиций избыточных термодинамических функций (функций смешения), характеризующих степень и термодинамические причины отклонений его поведения от идеального, подчиняющегося закону Рауля. Найдено, что для всех предельно разбавленных растворов немезогенов в мезоморфном растворителе наблюдаются сильные отрицательные отклонения от идеальности ( $\gamma_i^{\infty} < 1$ ), свидетельствующие о повышенном сродстве между сорбатом и жидкокристаллической неподвижной фазой, молекулы которой имеют дискотическую форму, табл. 3.

Анализ величин избыточной энтальпии  $\overline{H}_{i}^{E,\infty}$  и  $\overline{S}_{i}^{E,\infty}$  энтропии позволяет сделать вывод о том, что сильные отрицательные отклонения от идеальности обусловлены вкладом как энтальпийной, так и энтропийной составляющих химического потенциала сорбата в растворе с упорядоченностью типа  $Col_{rd}$ .



Рис. 4. Соотношение между энтальпийным ( $\Delta_{sp}\overline{H}_{P,T}^{o}/RT$  при 160°С) и энтропийным ( $\Delta_{sp}\overline{S}_{P,T}^{o}/R$ ) вкладом в константу сорбции углеводородов фазой ГУОБТ (пунктирная линия соответствует равенству энтальпийного и энтропийного вкладов в константу сорбции, нумерация точек соответствует табл. 1)

Однако, по сравнению с каламитными ЖК-растворителями ( $\gamma_i^{\infty} > 1$ ,  $\overline{H}_i^{E,\infty} > 0$ ,  $\overline{S}_i^{E,\infty} > 0$ ) в дискотическом ГУОБТ величины избыточной парциальной молярной энтальпии сорбатов малы (небольшие положительные значения или даже отрицательные значения  $\overline{H}_i^{E,\infty}$ ). Отрицательные  $\overline{H}_i^{E,\infty} > 0$  (*n*-гептан, *n*-октан, *n*-нонан, *n*-ундекан, циклогексан, бензол, этилбензол, изомерные ксилолы) свидетельствуют о том, что смешение этих жидких сорбатов с дискотическим ГУОБТ в колончатой мезофазе происходит с выделением теплоты (0,5–10,6 кДж/моль). Указанные сорбаты в ряду исследованных соединений характеризуются малыми размерами молекул и, по-видимому, легко встраиваются в пространство между периферийными алкоксильными цепями молекул ГУОБТ. Для сорбатов с положительными величинами  $\overline{H}_0^{E,\infty}$  (*n*-декан, *n*-додекан, *n*-тридекан, *n*-тетрадекан, *n*-пентадекан, толуол)

Таблица 2 Константы сорбции ( $p_{\rm sr}/K_{\rm H}$ ), энтальпии конденсации, теплоты адсорбции и стандартные энтальпии (теплоты) и энтропии сорбции углеводородов в колончатой фазе ГУОВТ

| Энтропия сорбции (в<br>интервале $145-177^{\circ}$ C)<br>$^{\circ}$ C) $-\Delta_{sp}\overline{S_{P,T}}$ , | Дж/моль-К            | 84,4     | 89,0         | 92,3         | 9'22         | 93,4      | 82,0           | 2'96       | 0'96         | 63.5              | 83,2        | 91,4   | 70,1   | 80,3       | 80,0     | 80,8     | 78.2     |
|-----------------------------------------------------------------------------------------------------------|----------------------|----------|--------------|--------------|--------------|-----------|----------------|------------|--------------|-------------------|-------------|--------|--------|------------|----------|----------|----------|
| Энтальпия сорбции (в интервале 145–177°С) $-\Delta_{sp} \overline{H}^{0}_{P,T}$ , кДж/моль                |                      | 35,9     | 39,9         | 43,2         | 38,8         | 47,5      | 44,5           | 52,5       | 54,0         | 54,7              | 35,6        | 40,3   | 32,8   | 39,1       | 39,9     | 40,2     | 39.8     |
| рбции (при<br>интервале<br>$-\Delta_a \overline{U}_{v,T}$ ,<br>моль                                       | ΓTC [12]             | 43,8     | 49,3         | 55,4         | 60,1         | 8'29      | 71,6           | -          |              |                   | 28,5        | 36,2   | 44,4   | 47,8       | 53,5     | 53,6     | 53.6     |
| Tennora adroo<br>V = const B<br>$100-145^\circ \text{C})$<br>$\kappa \Lambda \infty / i$                  | $\Gamma O V B T (C)$ | 26,3     | 27,9         | 31,1         | 35,3         | 36,8      | 41,8           | I          |              | I                 | I           | 16,9   | 22,9   | 32,7       | 31,7     | 32,5     | 32.5     |
| Энтальпия<br>кондесации<br>(при 160°С),<br>у Луу (монь                                                    |                      | 32,2     | 36,0         | 39,6         | 43,4         | 46,5      | 50,6           | 53,4       | 57,9         | 62,4              | 29,7        | 30,2   | 33,8   | 36,7       | 37,3     | 37,0     | 37.9     |
| $p_{\scriptscriptstyle M}/K_H \ ({ m mpu} \ 160^{\circ}{ m C})$                                           |                      | 0,812    | 1,360        | 2,491        | 4,223        | 6,845     | 12, 13         | 18,86      | 30,73        | 51,65             | 1,092       | 1,275  | 1,934  | 3,319      | 4,329    | 4,237    | 5.180    |
| Сорбат                                                                                                    |                      | и-Гептан | $\mu$ -OKTAH | $\mu$ -Нонан | $\mu$ -Декан | н-Ундекан | $\mu$ -Додекан | н-Тридекан | н-Тетрадекан | $\mu$ -Пентадекан | Циклогексан | Бензол | Толуол | Этилбензол | м-Ксилол | п-Ксилол | о-Ксилол |
| №<br>П/П                                                                                                  |                      | 1        | 2            | 3            | 4            | 5         | 9              | 7          | 8            | 6                 | 10          | 11     | 12     | 13         | 14       | 15       | 16       |

105

отрицательные отклонения от закона Рауля, очевидно, обусловлены их повышенной энтропией в реальном растворе с упорядоченностью типа  $Col_{rd}$ . Это свидетельствует о наличии благоприятных условий для растворения таких углеводородов, не сопровождающегося потерей их конформационной подвижности, вследствие неэквидистантного расположения трифениленовых остовов молекул ГУОБТ в пределах колонок. Исключение составляет сорбция бензола, для которого  $\overline{H}_i^{E,\infty}$  и  $\overline{S}_i^{E,\infty}$ отрицательны. Это свидетельствует о наличии значительных  $\pi$ - $\pi$ -взаимодействиях между молекулами этого сорбата и центральным трифениленовым ядром молекул дискотического ГУОБТ.

Таблица 3

|                 |              | 1                                                 | -                                                            | 1                                                    |                                                          |
|-----------------|--------------|---------------------------------------------------|--------------------------------------------------------------|------------------------------------------------------|----------------------------------------------------------|
| <b>№</b><br>п/п | Сорбат       | $\frac{\gamma}{160^{\circ}\text{C}}$ $(Col_{rd})$ | $\stackrel{\infty}{\stackrel{i}{l}}$ 180°C (N <sub>D</sub> ) | $\overline{H}_{i}^{E,\infty}$ $(Col_{rd}),$ кДж/моль | $\overline{S}_{i}^{E,\infty}$ $(Col_{rd}),$<br>Дж/моль-К |
| 1               | н-Гептан     | 0,274                                             | 0,293                                                        | -3,7                                                 | 2,4                                                      |
| 2               | н-Октан      | 0,301                                             | 0,306                                                        | -3,9                                                 | 1,3                                                      |
| 3               | н-Нонан      | 0,318                                             | 0,314<br>(182°C)                                             | -3,6                                                 | 1,1                                                      |
| 4               | н-Декан      | $0,\!344$                                         | 0,324                                                        | 4,6                                                  | 19,5                                                     |
| 5               | н-Ундекан    | $0,\!386$                                         | $0,\!357$                                                    | -1,0                                                 | $5,\!8$                                                  |
| 6               | н-Додекан    | $0,\!396$                                         | 0,319                                                        | 6,0                                                  | 21,6                                                     |
| 7               | н-Тридекан   | $0,\!451$                                         | 0,446                                                        | 1,2                                                  | 9,6                                                      |
| 8               | н-Тетрадекан | $0,\!482$                                         | 0,436                                                        | $^{3,8}$                                             | 14,9                                                     |
| 9               | н-Пентадекан | 0,513                                             | 0,447                                                        | $7,\!6$                                              | 23,1                                                     |
| 10              | Циклогексан  | 0,166                                             | 0,159<br>(182°C)                                             | -5,9                                                 | 1,0                                                      |
| 11              | Бензол       | $0,\!112$                                         | 0,115                                                        | -10, 1                                               | -5,4                                                     |
| 12              | Толуол       | $0,\!152$                                         | 0,140                                                        | 0,9                                                  | 17,7                                                     |
| 13              | Этилбензол   | $0,\!165$                                         | 0,169                                                        | -2,3                                                 | $9,\!6$                                                  |
| 14              | м-Ксилол     | $0,\!136$                                         | 0,129                                                        | -2,6                                                 | 10,6                                                     |
| 15              | п-Ксилол     | 0,137                                             | 0,134                                                        | -3,2                                                 | 9,0                                                      |
| 16              | о-Ксилол     | 0,130                                             | 0,127                                                        | -1,9                                                 | 12,5                                                     |

#### Коэффициенты активности немезогенов и их избыточные парциальные молярные энтальпии и энтропии в растворе в ГУОБТ

Таким образом, настоящей работе были исследованы сорбцив онные свойства дискотического жидкого кристалла 2,3,6,7,10,11-гекса(4-н-ундецилоксибензоилокси)трифенилена в условиях газомезофазной хроматографии. Найдено, что в отличие от систем "каламитный ЖК-немезоген" в системах "дискотический ГУОБТ-немезоген" наблюдаются сильные отрицательные отклонения от закона Рауля, обусловленные наличием большого свободного объема в структуре дискотического растворителя.

## Литература

- [1] Жидкокристаллические сорбенты в газовой хроматографии / З.П. Ветрова [и др.] // Изв. РАН. Сер. физическая. 1995. Т. 59. №3. С. 154–157
- [2] Особенности поведения смесей дискотических жидких кристаллов в качестве неподвижных фаз в газовой хроматографии / О.Б. Акопова [и др.] // Журн. физич. химии. 2000. Т. 74. №2. С. 293–296.
- [3] Сорбция углеводородов бинарной смесью жидких кристаллов с дискотической и стержнеобразной формой молекул / Л.А. Онучак [и др.] // Вестник Самарского гос. университета. Естественнонаучная серия. – 2003. – Второй спец. выпуск. – С. 129–137.
- [4] Термодинамические характеристики предельно разбавленных растворов углеводородов линейного и циклического строения в дискотическом жидком кристалле 2,3,6,7,10,11-гекса(4-н-октилоксибензоилокси) трифенилене / Л.А. Онучак [и др.] // Жидкие кристаллы и их практическое использование. – 2004. – Вып. 3–4. – С. 34–41.
- [5] Кудряшов С.Ю. Газохроматографическое и молекулярно-статистическое изучение адсорбции немезогенов на графитированной термической саже, модифицированной дискотическим жидким кристаллом / С.Ю.Кудряшов, А.А. Колесова, Л.А. Онучак // Жидкие кристаллы и их практическое использование. – 2004. – Вып. 3–4. С. 115–125.
- [6] Газохроматографическое изучение термодинамики сорбции углеводородов дисконематическим жидким кристаллом 2,3,6,7,10,11-гексациклогексанбензоатом трифенилена / Л.А. Онучак [и др.] // Журн. физич. химии. – Т. 78. – 2004. – №10. – С. 1880–1885.
- [7] Газохроматографическое изучение адсорбции углеводородов на графитированной саже, модифицированной дискотическими жидкими кристаллами / Л.А. Онучак [и др.] // Журн. Вестник Самаркого гос. университета. Естественнонаучная серия. – 2006. – №4(44). – С. 119–129.
- [8] Littlewood, A.B. / A.B. Littlewood, C.S.G. Phillips, D.T. Price // J. Chem. Soc. 1955. – №5. – P. 1480.
- [9] Онучак, Л.А. Расчет стандартных термодинамических функций сорбции в газожидкостной хроматографии / Л.А. Онучак, С.Ю. Кудряшов, В.А. Даванков // Журн. физич. химии. – 2003. – Т. 77. – №9. – С. 1677–1682.
- [10] Кудряшов, С.Ю. Физико-химическая интерпретация характеристик удерживания в газовой хроматографии с идеальной сжимаемой подвижной фазой / С.Ю. Кудряшов, Л.А. Онучак, В.А. Даванков // Журн. физич. химии. – 2002. – Т. 76. – №5. – С. 937–942.
- [11] Аверьянов, Е.М. Стерические эффекты заместителей и мезоморфизм / Е.М. Аверьянов. Новосибирск: Изд-во СО РАН, 2004. 470 с.
- [12] Авгуль, Н.Н. Адсорбция газов и паров на однородных поверхностях / Н.Н. Авгуль, А.В. Киселев, Д.П. Пошкус. – М.: Химия, 1975. – 384 с.

Поступила в редакцию 10/XI/2006; в окончательном варианте — 10/XI/2006.

## SORPTION PROPERTIES OF DISCOTIC LIQUID CRYSTAL 2,3,6,7,10,11-HEXA(4-*n*-UNDECYLOXYBENZOYLOXY) TRIPHENYLENE IN GAS-MESOPHASE CHROMATOGRAPHY CONDITIONS

### © 2006 A.A. Kudryashova, L.A. Onuchak, S.Yu. Kudryashov, O.B. Akopova<sup>5</sup>

In the paper sorption of saturated and aromatic hydrocarbons by discotic liquid crystal 2,3,6,7,10,11-hexa(4-n-undecyloxybenzoyloxy) triphenylene in gas-mesophase chromatography conditions is considered. It is found, that sorption of non-mesogenes leads to formation of an anisotropic solution with strongly expressed negative deviations from ideal behaviour (from Raul's law). Non-ideality is amplify with reduction of molecular volume of dissolved non-mesogene, and also at transition from saturated to aromatic hydrocarbons.

Paper received 10/XI/2006. Paper accepted 10/XI/2006.

<sup>&</sup>lt;sup>4</sup>Kudryashova Alisa Alexandrovna, Onuchak Ludmila Artemovna, Kudryashov Stanislav Yur'evich, Dept. of General Chemistry and Chromatography, Samara State University, Samara, 443011, Russia.

 $<sup>^5 \</sup>mathrm{Akopova}$ Ol'ga Borisovna, Problem Laboratory of Liquid Crystals, Ivanovo State University, Ivanovo, 153025, Russia.