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CHARM CONTENT OF A PROTON IN COLLINEAR
PARTON MODEL AND IN K;-FACTORIZATION
APPROACH

© 2003  V.A.Saleev, D.V. Vasin!

It is shown that the difference between the c-quark proton SF’s
calculated in the kr-factorization approach using different unintegrated
gluon distribution functions is the same order as the difference between
results obtained in the parton model and in the ky-factorization approach.

Introduction

The result of a study for the internal structure of a proton in the process of
the lepton deep inelastic scattering (DIS) can be presented in terms of a proton
structure function (SF) FS(XB, Q?) as a function of Q? = —¢? and xg = Q?/2(pq),
where ( is the exchange photon 4-momentum and p is the proton 4-momentum.
In a process of the charmed quark leptoproduction the charmed content of the
proton structure function FSC(XB, Q?) is probed. The recent relevant measurings
by the H1 [1] and the ZEUS [2| Collaborations at the HERA ep-collider include
the following kinematic region: 1.8 < Q% < 130 GeV? and 5-107° < xg < 2-1072.

The charmed quark SF has been studied in the framework of DGLAP [3]
and BFKL [4] dynamics. Usually, the c-quark SF FSC(XB, @?) is calculated via
the amplitude which described by the quark box diagrams. This type of a
calculation for the FSC(XB, Q?) is presented in the talk by A.Kotikov [5].

Here we use another method which is based on a direct calculation of the
total cc—production cross section in the electron DIS. In a such way, we have
obtained the c-quark distribution function Cp(Xg, Q%) which is connected with
the c-quark SF as follows:

FJ (xs, Q%) = 265xgCp(Xe. Q7). 1)

1. Electroproduction cross section

In the framework of the parton model and the one photon exchange
approximation the charmed quark production cross section in the electron DIS
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can be presented as a convolution of the c-quark proton distribution function
and the electron—c-quark partonic cross section:

do(ep — ecX) = f dxgCp(Xa, Q?)d6(ec — ec). (2)
The doubly differential cross section can be presented as follows:
do IM(ec — EC)|2
e ecX) = Cp(Xg, QO) ——————, 3
dXBdQZ( p_> ) p( B Q) 16]T(XBS)2 ( )
where s = (pe + P)% p is the proton 4-momentum, pPe is the electron

4-momentum. The squared amplitude of an elastic eCc—scattering has the
following form:

S 2
[M(ec - &0 = Z%(XBs)Z(yZ—Zyu— z’ggzy ) @
where y = Q?/(xgs). From (1), (3) and (4) we can obtain the master formula
do
xgQ* 5(ep — ecX)
Fo(xe, Q) = PXedQ (5)

(ma2(y? - 2y + 2 - 2m@y2/Q?))

At the high energy the dominant mechanism of the c-quark
electroproduction on a proton is the photon-gluon fusion. In the leading
order approximation for the QCD running constant as the relevant subprocess
isetg—e+c+cC

In the conventional collinear parton model it is suggested that hadronic
cross section, in our case o(ep — ecX,s), and the relevant partonic cross section
o(eg — ecc, §) are connected as follows:

o"M(ep — ecX, ) = f dxG(x, n?)5(eg — ecc, §), (6)

where §=xs, G(x,1?) is the collinear gluon distribution function in a proton,
X is the gluon fraction of a proton momentum, u? is the typical scale of a
hard process. The u? evolution of the gluon distribution G(x,u?) is described
by DGLAP evolution equation [3]. In the kr-factorization approach hadronic
and partonic cross sections are related by the following condition [6]:

*Tep—ex) = [ £ [ [FLoxkidier —eBy @)

where o(eg* — ecc, §) is the c-quark production cross section on the off mass-
shell ("reggeized”) gluon, k% = —f(?, §= Xs—lz?r, ¢ is the azimuthal angle in the
transverse XOY plane between vectors kr and the fixed OX axis (Pe and pp e
€ X02Z).

The unintegrated gluon distribution function ®(X, k2, u?) satisfies the BFKL
evolution equation [4]. At the X < 1 the off mass-shell gluon has dominant
longitudinal polarization along a proton momentum and the gluon polarization

four-vector is written as follows [6] €"(K) = k$/|lzT|.
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Our calculation in the parton model was done using the GRV [7]
and the CTEQS5L [8] parameterizations for a collinear gluon distribution
function G(x,1?). In case of the Kr-factorization approach we use the following
parameterizations for an unintegrated gluon distribution function CD(X,lzz,uz):
JB by Bluemlein [9], JS by Jung and Salam [10], KMR by Kimber, Martin
and Ryskin [11]. We compared these parameterizations directly in our recent
paper [12].

Finally, in the kr—factorization formalism the doubly differential cross
section for the process ep — ecX can be written as follows:

o’ Y > A peper
dxgdQ? ~ Xg fdequ)CdnCdkTEE—cx
MCEr T
DX, K1), .
25674(y — a1)(x9)2 (% ks, 1) @®
where pc = (Ec,Pc) is the c-quark 4-momentum, me is the c-quark

pseudorapidity, ¢¢ is the azimuthal angle between OX axis and vector Per,
a1 = 2(ppc)/s, by = 2(pepc)/s and
(k2 + Q2+ ybis+ 2(Grkr) — 2(PcrKr) — 2(dr Per))
((y—a1)9) '
We use the following approximations for gluon 4-momentum k' = xp* + k#,
where kff. = (0, IZT,O).
In the parton model one has IzT =0 and

do™ y PcPct
dxgdQ? - X_B fdequ)Cdnc( Ec )X

(9)

IM(eg — ecc)|?
2564y — a1)(xs)?

XG(x, 1%), (10)

where
x = (Q + yb1s— 2(Gr fer)) /(Y — a1)9). (5)

The obtained results (see also Fig. 1, Fig. 2) demonstrate agreement
between our predictions and the recent data for the FSC(XB’ @?) from HERA [2].
However, we see that the difference between the c-quark proton SF’s calculated
in the kr-factorization approach using different unintegrated gluon distribution
functions is the same order as than the difference between results obtained in
the parton model and in the kr-factorization approach.

This work is supported by the RFBR (Grant 02-02-16253).

The authors would like to thank B. Kniehl, A. Kotikov and H. Jung for
discussion of the obtained results, L. Lipatov and V. Kim for kind hospitality
during Workshop DIS-2003.



Charm content of a proton in collinear Parton model ...

0.4

0.3

GRV

0.2

&

F,»(x,Q%)

01

07\\\\\\

Q’=1.8 GeV’

KMR

AT T

Q=11 GeV’

F,l(x,Q%)

0 Ll I

Q=7 GeV’

w
/

)
el
<

10

107
X

107 107?
X

115

Fig. 1. The SF FSC(XB, Q%) as a function of xg at the Q*=1.8, 7, 11 and 30 GeV?

compared to ZEUS data
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compared to ZEUS data
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