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МЕХАНИКА

CONSTITUTIVE MODELS OF ANISOTROPIC DAMAGE

AND MODELLING OF DAMAGING MICROPROCESSES

IN SOLIDS

c© 2003 Y.N.Radayev1

A thermodynamic analysis of three-dimensional anisotropic damage
state and its time evolution is presented in an attempt to obtain
a deeper insight into damaging phenomena and find the canonical
state parameters required for a damage state description. The analysis
of damage state is based on the canonical hidden variable technique
and developed in the two canonical variants — the energy and the
entropy ones. Thermodynamic damage state potentials in their canonical
forms are obtained. In the case of isothermal damaging the canonical
net stress tensor is derived. A variant of the canonical description of
damage providing its notion originating from irreversible thermodynamics
canonical definition of directional damage variable is discussed. The
canonical representations of the thermodynamic damage state potentials
in terms of damage tensors are derived. Those involve the only metric
invariant of a damage state — the canonical norm. Directional damage
averaging the damage represented by the second and the fourth rank
damage tensors is considered. In order to demonstrate a superiority of
the canonical formalism a general thermodynamic analysis of brittle and
ductile damaging processes is carried out by the canonical technique.
Universal equations of damage balance in the course of damage growth
in solids are obtained.

1. Introduction

Damage is the decrease in elasticity property consequent on a decrease of
the areas that transmit internal forces, through the appearance and subsequent
growth of microcavities and microcracks [1].

Accurate analytical description of damage is a complicated problem, which
has generated a great deal of controversy. Much efforts have been devoted to
the refinements of the phenomenological theory of damage. Continuum damage
mechanics is supported by the general concepts of irreversible thermodynamics
and the formalism of hidden state variables [1], [2]. A unified thermomechanical
framework of which the physical description requires the consideration of
additional variables of state and of their gradients in order to account for
marked damage localization effects is presented in [3]. A general thermodynamic
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Samara State University, Samara, 443011, Russia.
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model of three-dimensional anisotropic damage state based on the canonical
formalism has been discussed in [4], [5].

After the Introduction, the paper includes a short review of the canonical
formalism (Section 2) with the objective of establishing a reference framework
of concepts, notations and terminology, and derivation the specific free energy
state potential of damage from the canonical asymptotics [4].

In Section 3 a variant of the canonical description of three-dimensional
anisotropic damage state is presented. As it is shown the canonical hidden state
variables provide a definition of the directional damage variable. Under such
a definition the canonical damage state variables can be interpreted at least
asymptotically as the Fourier coefficients of the expansion of the directional
damage variable into the sum of the Laplace spherical harmonics. Thus, the
canonical norm, known from our previous discussion [4], which is involved in
the expressions of thermodynamic damage state potentials can be estimated
by the classical Fourier–Bessel formula.

An anisotropic damage state is often represented by a tensor state variable.
We had to reestablish the definition of the second rank damage tensor in order
to elucidate its origin from the classical Finger strain tensor [4]. If necessary,
following [6] one can define higher rank damage tensors by polynomial in
the director components approximations of the directional damage variable.
Directional damage averaging the damage represented by the second and the
fourth rank damage tensors is considered in Section 3.

The discussion is then proceeded to a general thermodynamic analysis of
brittle and ductile damaging processes in solids (Section 4). Advantages of the
canonical technique can be learned from that part of the discussion.

2. Thermodynamic state potentials of damage

Our choice of the thermodynamic basis for the description of damage state
is determined by the advantages of the canonical formalism developed in the
previous discussions [4], [5].

Let ξβ denote the canonical entropy hidden variables, whereas ςβ — the
canonical energy variables. As it is shown [4], the specific entropy sD and the
specific internal energy uD of a damage state can be obtained as

sD =
2s0(u0,Ye)

σ2 ‖ξ‖2
, uD = −

2u0(s0,Ye)

∆2 ‖ς‖2
, (2.1)

where s0 = s0(u0,Ye), u0 = u0(s0,Ye) are the specific entropy and the specific
internal energy in the undamaged state, Ye is the elastic part of the strain
tensor Y, σ = σ(uD,Ye), ∆ = ∆(sD,Ye). In order to represent stress-strain state
of a damaged element we employ a pair of the tensors Y, S, where Y is the
strain tensor, S is the work-conjugated stress tensor:

tr (JTD) = tr (SY·) ,
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where T is the Cauchy stress tensor, D is the strain rate tensor (the
symmetrized spatial velocity gradient), J is the scalar defined by the Jacobian
of the deformation.

In the case of isothermal damaging it is expedient to introduce the specific
Helmholtz free energy of damage state ψD:

ψD(ϑς,Ye, ‖ς‖) = uD(sD,Ye, ‖ς‖) − ϑςsD, (2.2)

ϑς =

(

∂uD

∂sD

)

Ye, ςγ

, (2.3)

where ϑς is the absolute thermodynamic temperature in the canonical energy
ς-representation and the specific entropy expressed via the variables ϑς,Ye, ‖ς‖
by equation (2.3) needs to be substituted in (2.2): sD = g(γ,Ye), γ = ϑς ‖ς‖2 .

Thus the specific free energy is obtained as

ψD = ϑς

[

f (γ,Ye)
γ

− g(γ,Ye)

]

, γ
∂g
∂γ
=
∂ f
∂γ
.

Assuming a significant entropy increase in the course of isothermal
damaging, we adopt the following asymptotics

γhg(γ,Ye)
G(Ye)

= 1+ o(1) (2.4)

as γ→ 0, where h is a constant, G(Ye) is a function of the elastic strain tensor.
Additionally assuming that h = 1/2, which accords to the effective stress

concept of continuum damage mechanics, one can then derive

ψD = −
2
√

ϑςG(Ye)

‖ς‖
. (2.5)

After that the work-conjugated stress tensor can be obtained as

Sς = −
2ρR

√

ϑς

‖ς‖
∂G(Ye)
∂Ye , (2.6)

where ρR is the mass density at the reference state, the symbol ς in
the subscripts refers to the energy variant of the canonical formalism. As
the damage grows, the canonical energy norm ‖ς‖ tends to zero and the
work-conjugated stress is increasing. This increase is a manifestation of the
magnifying stress effect caused by progressive damaging. It should be also noted
that such a decomposition of the stress tensor into a magnifying factor and
an elastic stress tensor is only valid as an isothermal asymptotics of the work-
conjugated stresses represented in the canonical thermodynamic basis and is
afforded by the energy canonical asymptotics.

In the canonical entropy ξ-representation the work-conjugated stress tensor
Sξ can be determined as follows

Sξ = −ρR















(

∂sD

∂uD

)

Ye, ξγ















−1 (

∂sD

∂Ye

)

uD, ξβ

.
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3. A variant of the canonical description of damage

It is known [4], that the canonical description of damage is not unique.
Any realization of the canonical description does not change the form of the
canonical asymptotics (2.1) and the canonical norms ‖ξ‖ , ‖ς‖ .

The specific free energy canonical asymptotics (2.5) involves the canonical
norm ‖ς‖ = √ςβςβ, where ςβ are the canonical energy hidden variables [4].
An adequate description of anisotropic damage state requires an appropriate
directional damage variable ς = ς(n), where n is a unit three-dimensional vector
often referred to as a director. In the actual damaged state the value of ς
associated with the director n is the damage measured in some way.

Let d1, d2, d3 be a local orthonormal basis in the space. By introducing
the angle coordinates Θ and Φ on the sphere of unit directions with respect to
the coordinate axes determined by the vectors d1, d2, d3, we then can consider
the orthogonal set of the Laplace spherical harmonics Y (k)

l (Θ,Φ) (0 6 Θ 6 π,
0 6 Φ 6 2π) consisting of 2l + 1 functions:

Y (k)
l (Θ,Φ) = i−k

√

(l − k)!
(l + k)!

P(k)
l (cosΘ)e−ikΦ (k = −l, ..., l),

where

P(−m)
l (cosΘ) = (−1)m

(l − m)!
(l + m)!

P(m)
l (cosΘ) (m = 1,2, ..., l),

P(0)
l = Pl are the Legendre polynomials defined as

Pl(z) =
1

2ll!

dl

dzl

[

(z2 − 1)l
]

,

P(k)
l are the associated Legendre functions

P(k)
l (z) = (1− z2)

k
2

dk

dzk
Pl(z).

The identities Y (−m)
l = (−1)mY (m)

l

∗
(l = 0,1, ...; m = 1,2, ..., l) are valid. Hereafter,

the asterisk denotes the complex conjugate. The spherical harmonics constitute
a complete system of orthogonal on the unit sphere functions.

The system

Ỹ (k)
l = ik

√
2l + 1Y (k)

l (l = 0,1, ... ; k = −l, ...l)

is a orthonormal basis on the unit sphere. This means that any directional
damage variable ς = ς(n) can be expanded into the Fourier series

ς(Θ,Φ) =
∞
∑

l=0

2l
∑

k=−2l

c(k)
2l Ỹ (k)

2l (Θ,Φ), (3.1)

where c(k)
2l are the Fourier coefficients

c(k)
2l =

1
4π

2π
∫

0

π
∫

0

ς(Θ,Φ)Ỹ (k)∗
2l (Θ,Φ) sinΘdΘdΦ. (3.2)
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The root-mean-square and the average of the directional damage are
determined by

ς̄ =

√

√

√ ∞
∑

l=0

2l
∑

k=−2l

∣

∣

∣

∣

c(k)
2l

∣

∣

∣

∣

2
, < ς >= c(0)

0 . (3.3)

The root-mean-square of the directional damage variable has the similar to
the canonical norm ‖ς‖ expansion in the sum of the squared parameters. Thus,
a variant of the canonical energy description is obtained by the definition of
the canonical directional damage variable ς = ς(n) according to equation (3.1),
wherein

∞
∑

l=0

2l
∑

k=−2l

∣

∣

∣

∣

c(k)
2l

∣

∣

∣

∣

2
=

∑

β

ς2
β, ‖ς‖

2 ∂ ln |ψD|
∂ςβ

= −ςβ. (3.4)

The canonical directional damage variable ς = ς(n) can be then incorporated
in an alternative damage description scheme by extracting damage tensors from
the orientation distribution ς = ς(n). Those afterwards can be employed for
tensor representations of anisotropic damage state. Extracting damage tensors
from the canonical orientation distribution can be realized by the technique
proposed, for instance, in [6].

As it was elucidated in our previous discussion [7], the symmetric second
rank damage tensor D could be defined by the reduction of the effective load
carrying area of the plane element normal to director n according to the
relation

ς =

√

tr
[

(I − D)2n ⊗ n
]

. (3.5)

Symmetry of the damage tensor provides a clear mechanical interpretation
for damage principal directions and values. In view of symmetry, the damage
tensor can be represented in the spectral form

D =
3

∑

α=1

D(α)d(α) ⊗ d(α), (3.6)

wherein d(1), d(2), d(3) are vectors of the orthonormal eigenbasis (in general,
different from that introduced above), and D(1), D(2), D(3) — the damage tensor
eigenvalues, called also as principal damages.

Substitution of spectral decomposition (3.6) into equation (3.5) gives

ς =
√

(1− D(1))2n2
(1) + (1− D(2))2n2

(2) + (1− D(3))2n2
(3), (3.7)

where n(i) are the components of the unit vector n with respect to the damage
eigenbasis.

For the plane element, orthogonal to the principal axis of damage labelled
by γ, we obtain from the latter equation the following formula

D(γ) =
dA(γ) − dA∗(γ)

dA(γ)
(no sum onγ; γ = 1,2,3), (3.8)
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that accords to the classical Kachanov–Rabotnov definition of the damage
variable.

If one renumber the principal damages in the following order

D(3) 6 D(2) 6 D(1),

then for an arbitrary orientation n the following double sided estimation is
derived:

D(3) 6 1− ς 6 D(1).

The principal damages can be represented in terms of the principal damage
stretches LD

(α) (see discussion in [4]) as follows

1− D(γ) =
LD

(1)L
D
(2)L

D
(3)

LD
(γ)

,

or vice versa

LD
(1) =

√

(1− D(2))(1− D(3))

(1− D(1))
, LD

(2) =

√

(1− D(1))(1− D(3))

(1− D(2))
,

LD
(3) =

√

(1− D(1))(1− D(2))

(1− D(3))
.

(3.9)

Consider then the mean of the directional damage variable ς as represented
by the second order approximation (3.7). We shall use the notations θ, ϕ for
the spherical angles. Let C( j) = (1 − D( j))2 ( j = 1,2,3) and a pair of angular
brackets <> denote the averaging over the unit sphere. The following iterated
integral

<ς>=
1

4π

2π
∫

0

π
∫

0

√

C(1)sin2θcos2ϕ +C(2)sin2θsin2ϕ +C(3)cos2θsinθdθdϕ (3.10)

by making use of the result [8] (formula 2.597.2) becomes

<ς>=
2
π

1
∫

0

E(k)
√

(C(3) −C(2))τ2 +C(2) dτ, k =

√

(1− τ2)(C(2) −C(1))

(C(3) −C(2))τ2 +C(2)
, (3.11)

where E(k) is the complete elliptic integral of the second kind, k is the modulus.
The number of the independent parameters in (3.11) can be reduced by

introducing ratios of the eigenvalues C(1), C(2), C(3):

π <ς>

2
√

C
= I(p1, p2) (p1 = C(1)/C(2), p2 = C(2)/C(3), C = C(3)), (3.12)

where

I(p1, p2) =

1
∫

0

√

(1− p2)τ2 + p2 E(
√

p2(1− τ2)(1− p1)((1− p2)τ2 + p2)−1 ) dτ.
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The following expressions for the variables p1, p2, C in terms of the principal
damage stretches (see equations (3.9)) are valid:

√
p1 =

LD
(2)

LD
(1)

,
√

p2 =
LD

(3)

LD
(2)

,
√

C = LD
(1)L

D
(2). (3.13)

The isolines p1(p2, I) = const for values p1 = 0.0, p1 = 0.05, ... , p1 = 1.0 are
plotted in Figure.
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The mean of I = I(p1, p2) is:

<I>=

1
∫

0

1
∫

0

I(p1, p2)dp1dp2 = 1.157790... . (3.14)

The average value (over the unit square) of the ratio <ς>/
√

C is obtained as
〈

<ς>
√

C

〉

=
2
π
<I>= 0.737072... . (3.15)

One more useful representation is:

π <ς>

2
√

C
= q−1(1+ p2q2)J(p, q),

where the improper integral

J(p, q) =

q
∫

0

kE(k)dk
√

q2 − k2 (

1+ p2k2)2

depends on the parameters

p =

√

√

√

√LD
(1)

2LD
(2)

2 − LD
(1)

2LD
(3)

2

LD
(1)

2LD
(3)

2 − LD
(2)

2LD
(3)

2
, q =

√

√

√

√

1−
LD

(2)
2

LD
(1)

2
.

A more symmetric formula for the involved ratio must be remarked:

π <ς>

2
√

C
= (1+ p∗2)J∗(p∗, q∗), (3.16)

wherein

J∗(p∗, q∗) =

1
∫

0

k∗E(q∗k∗)dk∗
√

1− k∗2
(

1+ p∗2k∗2
)2
, p∗ =

√

√

√

√LD
(2)

2

LD
(3)

2
− 1, q∗ =

√

√

√

√

1−
LD

(2)
2

LD
(1)

2
.

Integral J∗ for weak damage anisotropy (q∗ → 0) is obtained as

J∗(p∗, q∗) =
π

2p∗4
(1+

1
4

q∗2p∗−2)















1
4

(1+ p∗−2)
−3/2

ln

√

1+ p∗−2 + 1
√

1+ p∗−2 − 1
+

1

2p∗−2(1+ p∗−2)















−

− 1

8p∗4
q∗2

√

1+ p∗−2
ln

√

1+ p∗−2 + 1
√

1+ p∗−2 − 1
+ O(q∗4).

The latter equation provides the following exact formula for integral J∗ in
equation (3.16) if damage state is axial symmetric (i.e. q∗ = 0):

J∗(p∗, 0) =
π

2p∗4















1
4

(1+ p∗−2)
−3/2

ln

√

1+ p∗−2 + 1
√

1+ p∗−2 − 1
+

1

2p∗−2(1+ p∗−2)















. (3.17)

The average value of the directional damage variable ς, approximated according
to the equation

ς4
= tr [n ⊗ nCn ⊗ n] (

4
√

C = I − D),
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can be expressed analytically by using the elliptic functions of modulus 1/
√

2,
although the corresponding expression is rather complicated:

<ς>=
2
π

u2
∫

u1

κ′(u)
1+ κ2(u)

du



















βu

8 4
√

α3
u



















4 4
√

α3
u

4
√

C(33)

ψu
− π + ln |τu| + 2arctg4

√

C(33)

αu



















+

+
u

√
2 4
√
γu

4
√

αuγu − β2
u

+
1
√
γu

(2β2
u + αuγu)

(

1
2
√
αu
− 1

4 4
√
αu

)

×

×( f +1 (u,ω+u ) − f −1 (u,ω−u )) +
2β2

u + αuγu

4
√
γu

( f +2 (u,ω+u ) + f −2 (u,ω−u ))

}

,

(3.18)

wherein β2
u − αuγu > 0, τu = ( 4

√

C(33) − αu)/( 4
√

C(33) − 4
√
αu), ω±u = 1/2± ωu,

f ±1 (u, ρ2) =
4
√

C(33)
√

2
√

dn−2u − 1(
√

C−1
(33)(dn−2u − 1)± √αu)

[

Π(u, ρ2) − u
]

,

f ±2 (u, ρ2) =
4
√

C(33)
√

2
√

dn−2u − 1(
√

C−1
(33)(dn−2u − 1)± √αu)2

{

1
(ρ2 − 1)(1− 2ρ2)

×

×
[

ρ2E(u) + (
1
2
− ρ2)u + (3ρ2 − ρ4 − 3

2
)Π(u, ρ2)−ρ

4snucnudnu
1− ρ2snu2

]

+ u − 2Π(u, ρ2)

}

,

αu = C(33) +
C(11) − 2C(13) + 2(C(12) − C(13)− C(23))κ2(u) + (C(22) − 2C(23))κ4(u)

(

1+ κ2(u)
)2

,

βu =
C(13) + (C(13) + C(23)− 2C(12))κ2(u) + (C(23) − C(11)− C(22))κ4(u)

(

1+ κ2(u)
)2

,

γu =
C(11) + 2C(12)κ

2(u) + C(22)κ
4(u)

(

1+ κ2(u)
)2

, ωu =

√
αu

√

C(33)

2(dn−2u − 1)
, ψu = 2βu + γu.

The standard notations for the Legendre canonical elliptic integrals and Jacobi
elliptic functions are used in the above equations. The rapidly convergent Fourier
series for involved elliptic functions can be found in [8]. These series provide the
most effective way of damage averaging and considerable economy in numerical work.

The limits u1, u2 are found from the following equations

snu1 =

√

√

√

√

√

√

√ 2
√

C(33)− C−1
(11)C

2
(13)

√

C−1
(33)+

√

C(33) −C−1
(11)C

2
(13)

, snu2 =

√

√

√

√

√

√

√ 2
√

C(33)− C−1
(22)C

2
(23)

√

C−1
(33) +

√

C(33)− C−1
(22)C

2
(23)

. (3.19)

A new variable u (the inversed amplitude) is defined by

tg2ϕ = κ2(u) =
−(4C(12)C(33) − 4C(13)C(23)− C(12)C−1

(33)sd4u) ± 4
√
∆

−4C2
(23)+ 4C(22)C(33) −C(22)C−1

(33)sd4u
, (3.20)

where discriminant ∆ is

16∆ = (C−2
(33)sd8u − 8sd4u + 16C2

(33))(C
2
(12) − C(11)C(22))+

+(4C−1
(33)sd4u − 16C(33))(2C(12)C(13)C(23)− C2

(23)C(11)− C2
(13)C(22)).
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Actually we should take care of variable u while substituting it instead of ϕ by
verifying monotonicity for ϕ = ϕ(u) (see equation (3.20)).

Complete investigation of averaged directional damage represented by the fourth
rank damage tensor requires five-parametric analysis of an integral similar to I in
equation (3.12). We give below the results, which are due mainly to the availability
of high speed computers:

<I>=

1
∫

0

...

1
∫

0

I(p1, ..., p5) dp1...dp5 = 1.35693417... ,

〈

<ς>
4
√

C

〉

=
2
π
<I>= 0.86385112... .

One then can compare these numerical results to those obtained by using the
second rank damage tensor (see equations (3.14) and (3.15)).

By analysing the inversed amplitude ranging a primary classification of damage
anisotropy in solids, based on representation (3.18) of averaged directional damage,
arises. Omitting details here we discriminate only the most important type of damage
anisotropy.

In view of (3.19), the length of segment [u1, u2] (the spectral band of inversed
amplitude) can be treated as a natural scalar measure of damage induced anisotropy.
If the right hand sides of equations (3.19) are only slightly different, then the lower
boundary inversed amplitude u1 almost equals to the upper one u2 (the narrow
spectral band of inversed amplitude). In such a case the integral in (3.18) can be
easily evaluated providing a simple computation formula for <ς>. Confluent inversed
amplitude damage spectrum corresponds to the exact equality u1 = u2.

4. Analysis of damaging processes in solids by the canonical

technique

The canonical technique can be applied to investigation of damage
phenomena in solids. We shall demonstrate the usability of the canonical
formalism by a study of different damaging microprocesses.

4.1. Isothermal brittle damaging

As the irreversible strain energy release rate compared with that of brittle
damaging is small the first term in the right-hand side of the entropy balance
equation

ρRϑς ṡD = tr
(

SςẎa
)

−
∑

β

ρR

(

∂ψD

∂ςβ

)

ϑς, Ye

ς̇β (4.1)

can be omitted.
In view of asymptotic formula (2.5) the specific entropy increase rate is

given by the equation
√

ϑς ṡD = −
G(Ye)

‖ς‖2
‖ς‖· +

1
‖ς‖

tr

(

∂G
∂Ye Ẏe

)

. (4.2)

The canonical asymptotics of the specific free energy (see equation (2.5)),
equations (4.1), (4.2) lead to the equation

‖ς‖·

‖ς‖
+

1
G

tr

(

∂G
∂Ye Ẏe

)

= 0. (4.3)
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The latter equation is integrated to result in the balance equation

‖ς‖ G(Ye) = Const. (4.4)

The obtained equation shows the relation between the decrease of the elastic
strain and increase of damage in the course of brittle damaging.

4.2. Effect of irreversible strains on damaging

By using the same technique as in the previous case, the following equation

G(Ye) ‖ς‖· + ‖ς‖ tr

(

∂G
∂Ye Ẏe

)

=
1

ρR
√

ϑς
tr

(

‖ς‖2 SςẎa
)

(4.5)

is obtained instead of equation (4.3).
The latter equation can be integrated along the isothermal damaging

process, if ‖ς‖2 Sς = S̄ς, where S̄·ς = 0. Thus, we obtain

G(Ye) ‖ς‖ =
1

ρR
√

ϑς
tr

(

S̄ςYa
)

+ const, tr
(

S̄ςYa
)·

> 0. (4.6)

Thus, the irreversible strains can intervene in the dominant brittle damaging
microprocess by delaying the damage growth.

4.3. Ductile damaging

The main factor affecting the ductile damaging is the microstresses caused
by inhomogeneity of the plastic flow at the microscale. Thus, the state variable
Ye should be replaced by the microstrain tensor YµP, where µ in the superscript
refers to the microdistribution. The pair of the work-conjugated microstress
tensor Sµς and the microstrain tensor YµP can be then replaced by the stress
tensor Σς and the plastic strain tensor YP according to the microstrain energy
equivalence equation

tr
(

SµςẎµP
)

= tr
(

ΣςẎP
)

.

The function G(Ye) should be replaced by a monotonously increasing (as
the plastic strains are increasing) up to the saturation limit G∞ function of
YP. Equation (4.5) is replaced by the equation

G(YP) ‖ς‖· + ‖ς‖ tr
(

∂G

∂YP
ẎP

)

=
1

ρR
√

ϑς
tr

(

‖ς‖2ΣςẎP
)

, (4.7)

which again, if ‖ς‖2Σς = Σ̄ς, where (Σ̄ς)· = 0, is integrated along the isothermal
ductile damaging process:

G(YP) ‖ς‖ =
1

ρR
√

ϑς
tr

(

Σ̄ςYP
)

+ const.
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A universal integral can be obtained in the case of proportional loading,
which often occurs in practice. By using the constitutive equations

YP
(α) = ω(JΣ)Σς(α) (2JΣ = Σς(ν)Σς(ν)),

where YP
(α) are the principal plastic strains and Σς(α) are the principal stresses,

which are valid for a proportional loading, equation (4.7) becomes

d
dJΣ

[

G(YP) ‖ς‖
]

=
1

ρR
√

ϑς
‖ς‖2

(

ω + 2JΣ
dω
dJΣ

)

. (4.8)

Assuming microstress saturation in the yielded zone and replacing in the
latter equation G(YP) by the saturation limit G∞, the following equation is
obtained

const− 1
‖ς‖
=

1

ρRG∞
√

ϑς

JΣ
∫ (

ω + 2JΣ
dω
dJΣ

)

dJΣ. (4.9)

We conclude this section by noting that in view of the latter equation
the microstress intensity decreases as the damage grows, thus the microstress
free energy stored within the localized yielded zone is primarily consumed by
damaging.

5. Conclusions

1) Obtained results have provided the canonical damage state variables
definitions and the convenient formalism necessary for them to be usable
in fracture mechanics.

2) A variant of the canonical realization of the damage description has
been proposed. The variant is based on the canonical directional damage
variable, derived from the canonical set of damage state variables, as
opposed to that derived from raw stereological data.

3) The canonical thermodynamic damage state potentials have been
obtained (in particular the Helmholtz free energy).

4) The work-conjugated stress tensor of the damage state representing the
magnifying stress effect has been derived.

5) Directional damage averaging the damage represented by the second and
the fourth rank damage tensors has been discussed. By the obtained
integral representation of the average damage the narrow band and
the confluent inversed amplitude spectra of damage have been naturally
discriminated. The length of the inversed amplitude spectral band has
been introduced as a natural scalar measure of damage anisotropy. In
the case of narrow spectral band the simple technique of computation of
the averaged anisotropic damage has been proposed.

6) The brittle and ductile damaging microprocesses have been analyzed by
the canonical technique. Universal balance equations valid along various
damaging processes have been obtained demonstrating a superiority of
the canonical technique in the damage modelling.
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