УДК 581.524.3

ЭКОЛОГИЧЕСКИЕ ОСНОВЫ И ПРИНЦИПЫ ПОСТРОЕНИЯ СИСТЕМЫ ФИТОМОНИТОРИНГА УРБОСРЕДЫ В ЛЕСОСТЕПИ¹

© 2003 Л.М. Кавеленова²

В статье определяются общие экологические закономерности и частные особенности урбосреды в условиях лесостепной зоны, сформулированы принципы, с учетом которых должна строиться система фитомониторинга городской среды в данных природно-климатических условиях.

Оценка качества урбанизированной среды, насыщенной разнообразными источниками загрязнения атмосферы, наряду с теоретическим, имеет важнейшее практическое значение. Однако использование физических, физикохимических, химических методов обследования при их высокой точности не может создать полной картины экологической ситуации. Это связано как с ограниченным числом точек на территории города, где проводится инструментальный контроль загрязнения, так и с собственно точечным характером получаемой информации. Инструментальный контроль дает информацию о концентрации загрязнителей, присутствующих в воздухе на данный момент времени. Следует также отметить, что загрязнители, присутствующие в окружающей среде в низких концентрациях, как правило, не отслеживаются, хотя их влияние на природные объекты сохраняется.

Напротив, природные компоненты урбосреды, и в первую очередь растения как объекты фитомониторинга, могут использоваться для получения информации как о недавнем и кратковременном, так и о длительном (хроническом) воздействии загрязняющих веществ в течение определенного периода времени в прошлом [10]. Пороговые концентрации загрязнителей, влияющих на растительные и животные организмы, зачастую существенно различаются [5–8], а поскольку практика использования существующих нормативов ПДК основывается на реакциях животных организмов, растения в ряде случаев оказываются более чувствительными сенсорами. Наконец, анализируя реакции растений в составе зеленых насаждений города, мы приобретаем возможность определения ответных реакций, интегрированных во

 $^{^{1} \}Pi {\rm peдставлена}$ доктором биологических наук профессором Н.М. Матвеевым.

²Кавеленова Людмила Михайловна (biotest@ssu.samara.ru), кафедра экологии, ботаники и охраны природы Самарского государственного университета, 443011, г. Самара, ул. Акад. Павлова, 1.

времени и пространстве. Таким образом, только дополнение объективной информации химического и физико-химического контроля данными биомониторинга приблизит нас к адекватной оценке экологической ситуации в современном городе и проведению его экологического зонирования.

В последнее время широко обсуждается проблема биоиндикации техногенного загрязнения с использованием растений для промышленных зон и городской среды, однако в большинстве подобных работ российские исследователи обращаются к условиям лесной зоны (напр. [8, 9, 11]), хотя ранее в этом плане также привлекали к себе внимание лесостепь и степь Украины [4]. Как экологическая оценка состояния лесных массивов, так и оценка экологического состояния урбанизированных территорий в лесной зоне могут успешно осуществляться с привлечением показателей хвойных растений и эпифитных лишайников [1–3].

Говоря об особенностях создания системы фитомониторинга городской среды в лесостепи Среднего Поволжья, где подобные проблемы ранее не анализировались, мы должны опираться как на общие экологические закономерности, так и на учет местных природно-климатических условий.

К числу общих экологических и эколого-физиологических закономерностей следует отнести:

- интегрированный характер ответных реакций растений на весь комплекс условий местообитания, несводимый к ответу исключительно на
 техногенное загрязнение. Результатом является необходимость оценки
 (хотя бы в условной балльной системе) таких параметров модельных
 насаждений, как положение в рельефе, особенности почвенного покрова, режимов увлажнения и светового;
- неодинаковый уровень газоустойчивости различных видов высших растений, который позволяет рассматривать их в качестве объектов, в различной мере повреждаемых одной и той же концентрацией поллютанта в воздухе. Однако в условиях техногенно загрязненной городской среды практически для любого вида растений могут быть обнаружены (и обнаруживаются) на всех уровнях организации в разной мере выраженные структурно-функциональные отклонения от средней экофизиологической "нормы". Поэтому необходимость предварительного изучения множества видов и последующий выбор немногих из них в качестве индикаторных несомненны;
- определенные экофизиологические показатели, которые обнаруживают зависимость от уровня техногенного загрязнения и могут быть применены в качестве индикационных, характеризуются сезонной динамикой. На экспериментальной основе должны быть определены выбор периодов, в которые будет проводиться скрининг по данным показателям, и точки в городских насаждениях, где будет собираться информация.

Специфика условий лесостепи будет определяться пространственно-временной гетерогенностью, существование которой особенно отчетливо обнаруживается в городских агломерациях с высокой численностью населения и интенсивным развитием промышленности;

- удаление от источников техногенного загрязнения—промышленных предприятий и городской территории в целом одновременно означает изменение биотопических условий (положения в рельефе, свойств почвообразующих пород и почвы, микроклиматических условий). Поэтому пространственная гетерогенность городских условий в лесостепи ставит под сомнение возможность соблюсти правило единственного различия при выборе контроля. Мы предполагаем, что в этом случае необходимо формировать своего рода ореол модельных пробных площадей в насаждениях по периметру городской территории;
- в годы с уклоняющимися погодными условиями (экстремально жаркая либо затяжная и необычно холодная весна, избыточно жаркие и засушливые летние месяцы и пр.) будут наблюдаться изменения сроков прохождения растениями ведущих фенофаз, отклонения структурно-метаболических показателей от среднемноголетней нормы. Эти абиотические условия могут усилить либо ослабить ответную реакцию растений на техногенное загрязнение. В зависимости от условий конкретного года может быть целесообразен отказ от использования отдельных фитоиндикационных показателей, то есть годичная корректировка программы наблюдений.

Обобщение литературных данных, анализ природно-климатических условий и материалов собственных исследований позволяют нам указать ряд принципов, на которых должно быть основано формирование системы фитомониторинга урбосреды в природно-климатических условиях лесостепи.

А. Предварительный этап формирования системы фитомониторинга

- 1. Генетический принцип. Необходимо определение характера происхождения различных насаждений — объектов озеленения, формирующих систему озеленения, данного индустриального центра. Должны быть учтены: наличие либо отсутствие генетической связи с ранее существовавшими природными растительными сообществами; превалирование в развитии насаждения самопроизвольного формирования растительных группировок либо созидающей и регулирующей деятельности человека.
- **2.** Флористический принцип. Обязательным условием формирования системы фитомониторинга является составление списков видов высших растений, участвующих в формировании различных городских насаждений.

Такие списки должны явиться результатом обобщения данных маршрутных обследований и углубленного изучения крупных объектов озеленения (парковых территорий) за несколько последовательных вегетационных периодов.

- **3.** Принцип комплексной оценки биотопических условий. Параллельно с обследованием насаждений необходима комплексная оценка их ведущих экологических условий (положения в рельефе, особенностей водного и светового режимов, почвенного покрова, уровня техногенного загрязнения), которая впоследствии может быть формализована в виде балльных шкал.
- 4. Принцип формирования каркаса системы фитомониторинга. Модельные площадки для сбора информации фитомониторинга должны располагаться в соответствии с пространственным размещением объектов озеленения и пунктов аналитического контроля за загрязнением окружающей среды. Они должны быть представлены в различных функциональных зонах города и пригородных насаждениях с пониженным уровнем антропогенной нагрузки.
- **5. Этиологический принцип.** Вопрос о причинах наблюдаемых структурно-функциональных изменений растений в урбосреде должен решаться с учетом всего комплекса условий местообитания.
- 6. Принцип выбора регионально апробированных видов биоиндикаторов и индикат. В результате обобщения и статистического анализа результатов исследований должен быть осуществлен выбор регионально значимых видов — биоиндикаторов и их показателей, количественная либо качественная изменчивость которых обнаруживает связь с уровнем суммарного техногенного загрязнения либо каких-либо его компонентов.

Б. Этап организации и функционирования системы фитомониторинга

- **7.** Принцип конкретизации программы наблюдений. Программа наблюдений должна формироваться с учетом генезиса насаждений данной модельной площадки наблюдений.
- **8.** Принцип сезонной значимости индикат. Возможность использования в целях фитомониторинга не только обусловленных фенофазами морфологических, но и метаболических показателей высших растений определяется конкретными сроками внутри вегетационного периода.
- 9. Принцип учета особенностей вегетационного периода. В континентальном климате лесостепи в зависимости от условий конкретного вегетационного периода индикационная значимость различных показателей структуры либо метаболизма высших растений может изменяться.
- 10. Принцип отсутствия универсальных индикаторов. Нецелесообразно механическое использование без предварительной практической

апробации в условиях лесостепи, методик фитоиндикации, разработанных для иных природно-климатических зон либо модельных условий.

Что касается самих индикаторов-растений и их структурно-метаболических показателей, на основании собственных результатов и обобщения литературных данных мы составили таблицу, в которой отражены особенности применения этих фитоиндикаторов в городской среде в лесостепной зоне (таблица).

Система фитомониторинга в городских насаждениях, ориентированная как на контроль за качеством урбосреды, так и на своевременное обнаружение тенденций изменения самих насаждений, будет характеризоваться весомым вкладом в решение насущных проблем современных урбоэкосистем

Во-первых, интегрированная оценка эффекта техногенного загрязнения, динамичного во времени и разноуровневого в пространстве города, сможет стать необходимым дополнением существующему инструментальному (аналитическому) контролю, выявляя значимость для биосистем абстрактно установленных параметров загрязнения. Обобщение результатов аналитического мониторинга и фитомониторинга будет способствовать адекватному экологическому картированию (зонированию) городской территории, в том числе выявлению зон наибольшего экологического неблагополучия.

Во-вторых, в процессе проведения фитомониторинга будет пополняться информация о состоянии компонентов системы городского озеленения. Оценка жизненного состояния древесных растений в насаждениях всех типов необходима для своевременного отклика на выявленное неблагополучие особей или групп особей с последующими срочными мерами ухода либо заменой.

Наконец, изучение городской растительности является важнейшим полигоном для приобщения к исследовательской деятельности студентов и школьников. Подобные мониторинговые исследования получают все более широкое распространение за рубежом и в ряде городов России. Назрела насущная необходимость координации таких работ в едином русле учебно-исследовательского многоуровневого мониторинга.

Околоти теские основы и принципы постросния...

Таблица Возможности использования различных методик исследования городских насаждений в лесостепной зоне с целью фитомониторинга состояния урбосреды и уровня техногенного загрязнения

Объект / Параметры	Специфика получаемой информации	Особенности проведения исследований	Зависимость от условий года	Сезонная при- уроченность наблюдений	Преимущества	Недостатки и ограничения
Насаждения	Особенности эко-	Необходимы	Выражена	Наблюдения в	Обязательный	Зависимость
различных	морфного состава,	определение	в виде пе-	течение вегета-	элемент про-	от величины
генезиса,	экологических усло-	генезиса на-	риодических	ционного пери-	граммы фито-	обследуемой
назначения,	вий в насаждениях.	саждений,	колебаний	ода	мониторинга.	территории и
размеров /	Уровень соответствия	разграниче-	численности		Возможность	типа насаж-
Список ви-	условий экологическо-	ние местных	отдельных		использования	дений
дов высших	му оптимуму видов —	видов и ин-	видов		индикатор-	
растений	интродуцентов	тродуцентов.			ных видов,	
		Необходимость			балльных	
		многолетних			шкал	
		наблюдений				
Древесные	Интегрированный	Соблюдение	Возможно	Листопадные	Информация	Может быть
растения в	ответ на воздействие	соответствия		растения—	для исполь-	затруднено
насаждениях	· ·	возрастных	цифических	в течение	зования го-	определе-
_	местообитания	групп и форм		вегетационно-	родскими	ние причин
пов / Оценка		деревьев, на-	условий года		службами	ухудшения
жизненного		личие доста-		хвойные —	озеленения	жизненного
состояния		точного числа		круглогодично		состояния
		экземпляров в				
		группах				

Продолжение таблицы

					продоли	кение таолицы
Объект / Параметры	Специфика получаемой информации	Особенности проведения исследований	Зависимость от условий года	Сезонная при- уроченность наблюдений	Преимущества	Недостатки и ограничения
Береза по-	Показатели асиммет-	Соблюдение	Возможно	Возможна	Быстрота,	В лесостепи
вислая и др.	ричности листовой	соответствия	влияние спе-	оценка в лю-	дешевизна,	обнаружи-
древесные	пластинки как кри-	возрастных	цифических	бые сроки	легкость вы-	вается зави-
виды / Пока-	терии нарушения	групп и форм	погодных	вегетационного	полнения	симость от
затели флук-	стабильности разви-	деревьев, на-	условий года	периода после	методики	различных
туирующей	тия органов растений	личие доста-		завершения ро-		условий ме-
асимметрии		точного числа		ста листовых		стообитания
листовых		экземпляров в		пластинок		и возраста
пластинок		группах				деревьев
Древесные и	Показатели водного	Показатели	Сильно выра-	Сильно выра-	Возможна	Необходимость
травянистые	режима, количествен-	обладают	жена	жена	оценка первич-	соответству-
растения	ного состава пиг-	различной ла-			ных эффектов	ющего обо-
/ Физио-	ментного аппарата,	бильностью,			влияния за-	рудования,
лого-биохи-	активности фермен-	что осложняет			грязнителей	реактивов;
мические	тов, антиоксидантной	проведение			на органы	достаточ-
показатели	системы, накопления	скрининга			растений	но высокая
органов и	фенольных соеди-					трудоемкость
тканей	нений, свободных					
	аминокислот, пролина					

Окончание таблицы

Объект / Параметры	Специфика получаемой информации	Особенности проведения исследований	Зависимость от условий года	Сезонная при- уроченность наблюдений	Преимущества	Недостатки и ограничения
Древесные и	Доля жизнеспособной,	Необходимо	Возможно	Сильно вы-	Быстрота	Необходимость
травянистые	дефектной пыльцы,	четкое соблю-	влияние спе-	ражена для	выполнения	соответству-
растения /	показатели метабо-	дение сроков	цифических	большинства	методик, воз-	ющего обо-
Качество	лизма пыльцевых	отбора и ана-	погодных	видов	можность	рудования,
пыльцы	зерен	лиза проб	условий года		скрининга	реактивов
					большого	
					объема проб	
Древесные и	Морфологические,	Необходимо	Возможно	Выражена	Возможность	Зависимость
травянистые	физиолого-биохими-	соблюдение	влияние спе-		скрининга	от комплекса
растения	ческие показатели	сроков отбора	цифических		большого	условий ме-
/ Интен-	плодов и семян	проб; для пре-	погодных		объема проб	стообитания
сивность		одоления покоя	условий года			
плодоноше-		семян, как пра-				
ния, качество		вило, требуется				
плодов и		стратификация				
семян						

Литература

- [1] Байбаков Э.И. Оценка экологического состояния урбанизированных территорий с помощью методов лихеноиндикации (на примере Казани): Автореф. дис. ... канд. биол. наук. Ижевск, 2003. 19 с.
- [2] Баканов А.В. Экологическая оценка состояния лесных насаждений с помощью методов фитоиндикации на примере Сергиево-Посадского района: Автореф. дис. ... канд. биол. наук. М., 1997. 34 с.
- [3] Жидков А.Н. Эпифитные лишайники как показатель состояния сосновых насаждений в условиях промышленного загрязнения: Автореф. дис. ... канд. биол. наук. М., 1995. 21 с.
- [4] Коршиков И.И., Крауц К., Михеенко И.П., Тарабрин В.П. Изменчивость некоторых ферментов листовых зачатков терминальных почек тополя канадского в условиях аэротехногенного стресса // Интродукция и акклиматизация растений. 1991. №16. С. 68–73.
- [5] Николаевский В.С. Биологические основы газоустойчивости растений. Новосибирск: Наука, 1979. 280 с.
- [6] Николаевский В.С., Якубов Х.Г. Новая концепция и методология биоэкологического мониторинга и охраны природы // Тез. докл. XI Междунар. симпозиума по биоиндикаторам "Современные проблемы биоиндикации и биомониторинга". Сыктывкар, 2001. С. 139.
- [7] Николаевский В.С., Якубов Х.Г. Система методов фитоиндикации загрязнения воздуха и состояния наземных экосистем // Там же. С. 140.
- [8] Николаевский В.С., Якубов Х.Г. Экологические нормативы допустимого загрязнения воздуха для растительности // Там же. С. 140.
- [9] Стрельцов А.Б., Логинов А.А. Биоиндикационный метод оценки антропогенного воздействия // Матер. докл. Всерос. науч. конф. "Экологические и метеорологические проблемы больших городов и промышленных зон". СПб., 1999. С. 40–41.
- [10] Украинцева В.В. Цветковые растения—надежные индикаторы и биомониторы состояния окружающей среды // Биотестирование в решении экологических прооблем. СПб, 1991. С. 87–96.
- [11] Черненькова Т.В. Реакция лесной растительности на промышленное загрязнение. М.: Наука, 2002. 191 с.

Поступила в редакцию 30/XI/2003; в окончательном варианте — 30/XI/2003.

ON ECOLOGICAL GROUNDS AND PRINCIPLES OF PHYTOMONITORING SYSTEM CREATION IN FOREST-STEPPE CONDITIONS

© 2003 L.M. Kavelenova³

In the paper the main ecological grounds and specific ecological features of town environment in forest-steppe conditions are discussed. Principles that must be kept in mind when creating the phytomonitoring system are considered.

Paper received 30/XI/2003; Paper accepted 30/XI/2003.

 $^{^3}$ Kavelenova Ludmila Michailovna (biotest@ssu.samara.ru), Dept. of Ecology, Botany and Environmental Protection, Samara State University, Samara, 443011, Russia.