МАТЕМАТИКА

УДК 517.946

НЕКОТОРЫЕ МЕТОДЫ ОБРАЩЕНИЯ СИНГУЛЯРНЫХ ИНТЕГРАЛЬНЫХ УРАВНЕНИЙ¹

© 2003 Ю.С. Бабурин²

В статье излагаются и иллюстрируются на примерах новые методы решения в замкнутой форме полных сингулярных интегральных уравнений второго рода с ядром Коши определенного класса.

Излагаемые здесь методы обращения полных сингулярных интегральных уравнений второго рода с ядром Коши (в дальнейшем, полных СИУ-2К) основаны на соединении концепции регуляризации полных СИУ-2К [1, § 22–24] или [2, § 45,50,75,99] с концепцией сингуляризации полных СИУ-2К указанного класса [3 и 4, глава 1].

Пусть в исходном уравнении

$$(K_1 \phi)(t) \equiv a_1(t)\phi(t) + \oint_I \left[\frac{1}{\pi i} \frac{b_1(t)}{\tau - t} + k_1(t, \tau) \right] \phi(\tau) d\tau = f_1(t), t \in L$$
 (1)

контур интегрирования L—это замкнутая простая кусочно-гладкая кривая, ограничивающая конечную односвязную область D^+_L ; коэффициенты $a_1(t)$ и $b_1(t)$ —заданные функции класса Гельдера $H^{(\lambda)}(L)$ при $0 < \lambda \leqslant 1$, допускающие по переменной t с контура Lв замыкание $D^+_L \cup L$ области D^+_L однозначные аналитические продолжения $a_{+,1}(z)$ и $b_{+,1}(z)$ функционального класса $C^{(\infty)}(D^+_L) \cap H^{(\lambda)}(D^+_L \cup L)$, удовлетворяющие условию

$$a_{+,1}(z) - b_{+,1}(z) \neq 0$$
 при всех $z \in (D^+_L \cup L);$ (2)

¹ Представлена доктором физико-математических наук профессором Ю.Н. Ралаевым.

 $^{^2}$ Бабурин Юрий Степанович, кафедра высшей математики и информатики Самарского государственного университета, 443011, Самара, ул. Акад. Павлова, 1.

сингулярный интеграл с ядром Коши понимается в смысле его главного значения по Коши; регулярная часть $k_1(t,\tau)$ ядра представима в виде

$$k_1(t,\tau) = k_1^*(t,\tau) \prod_{j=1}^m (t - z_j)^{-\mu_j},$$
(3)

где m — неотрицательное целое число (при m=0 произведение равно единице), μ_j и z_j при $1\leqslant j\leqslant m$ — натуральные при $m\neq 0$ числа и фиксированные точки области D^+_L , а

$$k_1^*(t,\tau) = \lim_{z \to t \in L} k_{+,1}^*(z,\tau) = \lim_{w \to \tau \in L} k_{1,+}^*(t,w),\tag{4}$$

причем

$$k_{+,1}^*(z,\tau) \in C_z^{(\infty)}\{(z,\tau) : z \in D_L^+, \tau \in L\} \cap H_z^{(\lambda)}\{(z,\tau) : z \in L, \tau \in L, z \neq \tau\}, \quad (5)$$

$$k_{1}^{*}(t,w) \in C_{w}^{(\infty)}\{(t,w) : t \in L, w \in D_{L}^{+}\} \cap H_{w}^{(\lambda)}\{(t,w) : t \in L, w \in L, t \neq w\}.$$
 (6)

Если к обеим частям уравнения (1) применить сингулярный интегральный оператор (в дальнейшем СИ-оператор) K_2 , определяемый формулой

$$(K_2 \psi)(t) = a_2(t) \psi(t) + \oint_I \left[\frac{1}{\pi i} \frac{b_2(t)}{\tau - t} + k_2(t, \tau) \right] \psi(\tau) d\tau, \quad t \in L,$$
 (7)

где $a_2(t), b_2(t)$ и $k_2(t, \tau)$ — произвольные функции, удовлетворяющие условию Гельдера на контуре L (последняя— по каждой из переменных t и τ), то получится при $t \in L$ новое полное СИУ-2К

$$(K_2K_1\phi)(t) = a_{2,1}(t)\phi(t) + \oint_L \left[\frac{1}{\pi i} \frac{b_{2,1}(t)}{\tau - t} + k_{2,1}(t,\tau) \right] \phi(\tau)d\tau = (K_2f_1)(t)$$
 (8)

с коэффициентами [1, с.200; 2, с.197]

$$a_{2,1}(t) = a_2(t)a_1(t) + b_1(t)b_2(t), \quad b_{2,1}(t) = a_2(t)b_1(t) + a_1(t)b_2(t)$$
 (9)

и с регулярной частью ядра [4, с.4]

$$k_{2,1}(t,\tau) = a_2(t)k_1(t,\tau) + a_1(\tau)k_2(t,\tau) + \frac{b_2(t)}{\pi i} \frac{a_1(\tau) - a_1(t)}{\tau - t} + \left. + \oint_{t} \left[\frac{1}{\pi i} \frac{b_2(t)}{s - t} + k_2(t,s) \right] \left[\frac{-1}{\pi i} \frac{b_1(s)}{s - \tau} + k_1(s,\tau) \right] ds.$$
 (10)

Если при этом коэффициенты СИ-оператора K_2 вида (7) выбирать из требования, чтобы выполнялось "основное левое регулярное тождество":

$$b_{2,1}(t) = 0$$
 при всех $t \in L$, (11)

то есть выбирать в виде

$$a_2(t) = u(t)a_1(t), \quad b_2(t) = -u(t)b_1(t),$$
 (12)

где u(t) — произвольная функция класса $H^{(\lambda)}(L)$ и $u(t) \neq 0$ при всех $t \in L$, то в уравнении (8) исчезает сингулярный интеграл с ядром Коши. Если одновременно с этим регулярную часть $k_2(t,\tau)$ ядра СИ-оператора K_2 вида (7) выбирать в том же допустимом классе (3)–(7), которому принадлежит регулярная часть $k_1(t,\tau)$ ядра исходного уравнения (1), то есть выбирать в виде

$$k_2(t,\tau) = k_2^*(t,\tau) \prod_{j=1}^m (t - z_j)^{-\mu_j},$$
(13)

где

$$k_2^*(t,\tau) = \lim_{z \to t \in L} k_{+,2}^*(z,\tau) = \lim_{w \to \tau \in L} k_{2,+}^*(t,w),\tag{14}$$

И

$$k_{+2}^*(z,\tau) \in C_z^{(\infty)}\{(z,\tau) : z \in D_L^+, \tau \in L\} \cap H_z^{(\lambda)}\{(z,\tau) : z \in L, \tau \in L, z \neq \tau\}, \quad (15)$$

$$k_{2,+}^*(t,w) \in C_w^{(\infty)}\{(t,w) : t \in L, w \in D^+_L\} \cap H_w^{(\lambda)}\{(t,w) : t \in L, w \in L, t \neq w\}, \tag{16}$$

а неизвестную функцию $k_2^*(t,\tau)$ выбирать из требования, чтобы выполнялось "основное левое сингулярное тождество":

$$k_{2,1}(t,\tau) = 0, \quad t \in L, \tau \in L, t \neq \tau,$$
 (17)

то после вычисления (с помощью аппарата вычетов теории однозначных аналитических функций, например, [5, глава 5]) конечного числа интегралов левой части уравнения (17) вспомогательная функция $k_2^*(t,\tau)$ вычисляется:

- 1) однозначно и безусловно как решение неоднородного линейного алгебраического уравнения, если $m=0, k_1(t,\tau)=k_1^*(t,\tau)$ и поэтому $k_2(t,\tau)=k_2^*(t,\tau)$;
- 2) однозначно при выполнении соответствующего условия однозначной разрешимости неоднородной системы линейных алгебраических уравнений (в дальнейшем неоднородной СЛАУ) из $n = \mu_1 + \mu_2 + \cdots + \mu_m$ таких уравнений относительно вспомогательных неизвестных

$$\frac{\partial^l}{\partial w^l} k_{2,+}^*(t,z_j) = \lim_{w \to z_j} \frac{\partial^l}{\partial w^l} k_{2,+}^*(t,w), \quad 1 \leqslant l \leqslant \mu_j, \quad 1 \leqslant j \leqslant m,$$

число которых совпадает с числом n уравнений этой неоднородной СЛАУ, если $m \neq 0$.

При найденных (однозначно!) значениях $a_2(t), b_2(t)$ и $k_2(t, \tau)$ правая часть уравнения (8) становится известной, а само уравнение (8)

в силу выполнения тождеств (11) и (17) превращается в неоднородное линейное уравнение относительно прежней искомой функции $\phi(t)$. Единственное решение этого алгебраического уравнения

$$\phi(t) = \frac{(K_2 f_1)(t)}{a_{2,1}(t)} = \frac{1}{u(t) \left[a_1^2(t) - b_1^2(t) \right]} (K_2 f_1)(t), \quad t \in L$$
 (18)

является не зависящим от произвольной функции u(t) частным решением исходного СИУ-2К вида (1); поэтому справедливо представление

$$\phi(t) = \phi_*(t) + \sum_{j=1}^{n_1} c_j^* \phi_{0,j}(t), \quad t \in L,$$
(19)

где $\phi_*(t)$ — частное решение неоднородного линейного уравнения (1), c_j^* — фиксированные значения постоянных c_j при $1 \leqslant j \leqslant n_1$, $\{\phi_{0,j}(t)\}$ — полная система линейно независимых на контуре L собственных функций СИ-оператора K_1 вида (1) и число $n_1 \geqslant \omega_1$, если ω_1 — индекс уравнения (1).

Решив с помощью проверки следующую "проблему распознавания":

- 1) какая группа слагаемых правой части равенства (18) входит в каждую из функций $\phi_*(t)$ и $\phi_{0,i}(t)$ правой части представления (19);
- 2) с какими значениями c_j^* произвольных постоянных c_j входят функции $\phi_{0,j}(t)$ при $1 \leq j \leq n_1$ в правую часть уравнения (18), общее решение исходного уравнения (1) можно записать в виде

$$\phi(t) = \phi_*(t) + \sum_{j=1}^{n_1} c_j \phi_{0,j}(t), \quad t \in L,$$
(20)

где $c_1, c_2, ..., c_{n_1}$ — произвольные (вообще говоря, комплекснозначные) постоянные.

В этом — суть метода непосредственного обращения слева полных СИУ-2К указанного типа. Он применим к уравнениям вида (1), для которых выполнено условие (2) и для которых индекс $\omega_1 \leq 0$. Полезно высказать заранее следующее предостережение: если при решении конкретных примеров не обеспечено выполнение условия (13), то этот метод становится внутренне противоречивым, ибо получаемая вспомогательная функция $k_2^*(t,\tau)$ оказывается не принадлежащей избранному нами допустимому для нее функциональному классу (14), так как условие (16) в таких случаях не выполняется. Такая "внутренняя защищенность от ошибок" — замечательное свойство изложенного метода, редко встречающееся даже в "классических" методах решения полных СИУ-2К вида (1).

В качестве *примера 1* приведем здесь решение в замкнутой форме (то есть решения явного и точного, а не приближенного, и в результате вычисления *конечного* числа интегралов от известных и заданных функций) нормального случая полного СИУ-2К (вида (47) из [3, с.36]):

$$(K_1 \phi)(t) = (t^2 + 2)\phi(t) + \frac{1}{\pi i} \oint_L \left[\frac{t^2 - 2}{\tau - t} - \frac{\tau}{2} \cos(\tau - t) \right] \phi(\tau) d\tau =$$

$$= 2t^2 (e^t + t \sin t), \quad t \in L,$$
(21)

где $L = \{t : |t| = 1\}$ — проходимая против часовой стрелки единичная окружность с центром z = 0.

Решение. Поскольку здесь $a_{+,1}(z)-b_{+,1}(z)=(z^2+2)-(z^2-2)=4\neq 0$ и $a_{+,1}(z)+b_{+,1}(z)=(z^2+2)+(z^2-2)=2z^2=0$ при $z=0\in (D_L^*)=\{z:|z|<1\}$, то условие (2) выполнено и индекс уравнения (21)

$$\omega_1 = \operatorname{Ind}_L \frac{a_1(t) - b_1(t)}{a_1(t) + b_1(t)} = N_{D^+_L} [a_1(z) - b_1(z)] - N_{D^+_L} [a_1(z) + b_1(z)] = -2,$$

где $N_{D^+_L}\{w(z)\}$ означает число нулей функции w(z) в области D^+_L , если каждый нуль считать столько раз подряд, какова его кратность. Поэтому при решении в замкнутой форме уравнения (21) целесообразна [3, с.17, теорема 6] его непосредственная сингуляризация слева и недопустима его непосредственная сингуляризация справа. Так как здесь $k_1(t,\tau)=k_1^*(t,\tau)=\frac{-\tau}{2\pi i}\cos(\tau-t)$, ибо функция $k_{+,1}(z,\tau)=\frac{-\tau}{2\pi i}\cos(\tau-z)$ голоморфна по переменной z в замкнутом круге ($D^+_L\cup L$) = $\{z:|z|\leqslant 1\}$ при всех $\tau\in L$ и поэтому принадлежит допустимому классу (5) и функция $k^+_{1,+}(t,w)=\frac{-w}{2\pi i}\cos(w-t)$ голоморфна по переменной w в замкнутом круге ($D^+_L\cup L$) = $\{w:|w|\leqslant 1\}$ при всех $t\in L$ и поэтому принадлежит допустимому классу (6), то к обеим частям уравнения (21) применяем СИ-оператор K_2 вида (7) с регулярной частью ядра $k_2(t,\tau)=k_2^*(t,\tau)$ вида (13) при m=0, принадлежащей допустимому классу функций (14)–(16). В результате приходим к уравнению (8) с коэффициентами

$$a_{2,1}(t) = a_2(t)(t^2 + 2) + (t^2 - 2)b_2(t), \quad b_{2,1}(t) = a_2(t)(t^2 - 2) + (t^2 + 2)b_2(t)$$

и с регулярной частью ядра

$$k_{2,1}(t,\tau) = -\frac{a_2(t)}{2\pi i}\tau\cos(\tau - t) + (\tau^2 + 2)k_2^*(t,\tau) + \frac{b_2(t)}{\pi i}\frac{(2+\tau^2) - (2+t^2)}{\tau - t} + \frac{1}{\pi i}\oint_I \left[\frac{1}{\pi i}\frac{b_2(t)}{s - t} + k_2^*(t,s)\right] \left[\frac{2-s^2}{s - \tau} - \frac{\tau}{2}\cos(\tau - s)\right] ds.$$

Используя следующие результаты вычисления интегралов:

1)
$$\frac{b_{2}(t)}{\pi i} \oint_{L} \frac{1}{\pi i} \frac{2-s^{2}}{s-\tau} \frac{ds}{s-t} = \frac{b_{2}(t)}{\pi i} \frac{(2+t^{2})-(2+\tau^{2})}{\tau-t} = -\frac{b_{2}(t)}{\pi i} (\tau+t);$$
2)
$$\frac{-\tau}{2\pi i} \oint_{L} \frac{b_{2}(t)}{\pi i} \frac{\cos(s-\tau)}{s-t} ds = -b_{2}(t) \frac{\tau}{2\pi i} \cos(\tau-t);$$
3)
$$\oint_{L} \frac{2-s^{2}}{\pi i} \frac{k_{2}^{*}(t,s)}{s-\tau} ds = \oint_{L} \frac{2-s^{2}}{\pi i} \frac{k_{2,+}^{*}(t,s)}{s-\tau} ds = (2-\tau^{2})k_{2}^{*}(t,\tau);$$
4)
$$\frac{-\tau}{2\pi i} \oint_{L} k_{2}^{*}(t,\tau) \cos(\tau-s) ds = -\tau \sum_{i} res_{z=z_{i} \in D^{+}_{L}} \left[k_{2,+}^{*}(t,z) \cdot \cos(\tau-z) \right] = 0$$

и требуя выполнения тождеств (11) и (17), мы приходим к соотношениям: $a_2(t) = u(t)(2+t^2), b_2(t) = u(t)(2-t^2)$ при всех $t \in L$ и $-4u(t)\tau\cos(\tau-t) + 2\pi i \left[(\tau^2+2) + (\tau^2-2) \right] k_2^*(t,\tau) = 0$ при всех $t \in L$, $\tau \in L$, $t \neq \tau$; отсюда и получаем $k_2^*(t,\tau) = \frac{\tau}{2\pi i} u(t)\cos(\tau-t)$ как функцию, принадлежащую избранному нами допустимому для нее классу (14)–(16) и удовлетворяющую тождеству (17). Таким образом, в данном примере СИ-оператор K_2 определяется формулой

$$(K_2 \psi)(t) = u(t) \left\{ (t^2 + 2) \psi(t) + \frac{1}{\pi i} \oint_L \left[\frac{2 - t^2}{\tau - t} + \frac{\tau}{2} \cos(\tau - t) \right] \psi(\tau) d\tau \right\},\,$$

а уравнение (8) принимает вид $8t^2u(t)\phi(t)=K_2[2t^2(e^t+t\sin t)],\ t\in L$ и имеет единственное решение

$$\phi(t) = e^t + t \sin t, \quad t \in L, \tag{22}$$

не зависящее от произвольной функции u(t). Непосредственной проверкой убеждаемся (в результате вычисления конечного числа интегралов), что ни одно из слагаемых e^t и $t\sin t$ в отдельности не образует ни частного решения $\phi_*(t)$, ни собственной функции $\phi_{0,j}(t)$ исходного СИ-оператора K_1 вида (21), но зато $\phi_*(t) = e^t + t\sin t$, $t \in L$. Отсюда и заключаем, что исходное уравнение (21) с индексом $\omega_1 = -2$ безусловно разрешимо и имеет единственное решение вида (22). На этом решение примера 1 закончено.

Если же в исходном уравнении (1) положить

$$\phi(t) = (K_2 \psi)(t), \quad t \in L, \tag{23}$$

где K_2 — полный СИ-оператор вида (7), то приходим к новому полному СИУ-2К вида

$$(K_1 K_2 \psi)(t) = a_{1,2}(t) \psi(t) + \oint_L \left[\frac{1}{\pi i} \frac{b_{1,2}(t)}{\tau - t} + k_{1,2}(t, \tau) \right] \psi(\tau) d\tau = f(t), \quad t \in L, \quad (24)$$

с коэффициентами $a_{1,2}(t)=a_{2,1}(t)$ и $b_{1,2}(t)=b_{2,1}(t)$ того же вида (9) и с регулярной частью ядра

$$k_{1,2}(t,\tau) = a_1(t)k_2(t,\tau) + a_2(\tau)k_1(t,\tau) + \frac{b_1(t)}{\pi i} \frac{a_2(\tau) - a_2(t)}{\tau - t} +$$

$$+ \oint\limits_{L} \left[\frac{1}{\pi i} \frac{b_1(t)}{s-t} + k_1(t,s) \right] \left[\frac{-1}{\pi i} \frac{b_2(s)}{s-\tau} + k_2(s,\tau) \right] ds,$$

получающейся из $k_{2,1}(t,\tau)$ вида (10) взаимной перестановкой индексов "1" и "2". Если при этом коэффициенты СИ-оператора K_2 вида (7) выбирать из требования, чтобы выполнялось "основное правое регулярное тождество":

$$b_{1,2}(t) = 0, \quad t \in L,$$
 (25)

то есть выбирать их по-прежнему в виде (12), то в уравнении (24) исчезает его сингулярная часть, другими словами, сингулярный интеграл с ядром Коши, понимаемый в смысле его главного значения. Если одновременно с этим регулярную часть $k_2(t,\tau)$ ядра СИ-оператора K_2 вида (7) выбирать в том же допустимом классе (3)–(7), которому принадлежит регулярная часть $k_1(t,\tau)$ ядра исходного уравнения (1), то есть выбирать в виде (13)–(16), а неизвестную функцию $k_2^*(t,\tau)$ выбирать из требования, чтобы выполнялось "основное правое сингулярное тождество":

$$k_{1,2}(t,\tau) = 0, \quad t \in L, \tau \in L, t \neq \tau,$$
 (26)

то после вычисления (с помощью аппарата вычетов теории однозначных аналитических функций, например, [5, глава 5] конечного числа интегралов левой части уравнения (26) вспомогательная функция $k_2^*(t,\tau)$ вычисляется

- 1) однозначно и безусловно как решение неоднородного линейного алгебраического уравнения, если $m=0,\ k_1(t,\tau)=k_1^*(t,\tau)$ и поэтому $k_2(t,\tau)=k_2^*(t,\tau)$;
- 2) однозначно при выполнении соответствующего условия однозначной разрешимости неоднородной СЛАУ, в которой число уравнений совпадает с числом $n = \mu_1 + \mu_2 + \dots + \mu_m$ входящих в нее вспомогательных неизвестных вида

$$\frac{\partial^l}{\partial z^l} k_{+,2}^*(z_j, \tau) = \lim_{z \to z_j} \frac{\partial^l}{\partial z^l} k_{+,2}^*(z, \tau), \quad 1 \leqslant l \leqslant \mu_j, \quad 1 \leqslant j \leqslant m.$$

При найденных (однозначно!) значениях $a_2(t), b_2(t)$ и $k_2^*(t, \tau)$, удовлетворяющих требованиям (25) и (26), уравнение (24) превращается в линейное алгебраическое уравнение относительно новой искомой функции $\psi(t), t \in L$. Если единственное решение $\psi^*(t) = f_1(t)/a_{1,2}(t), t \in L$ этого уравнения подставить в обе части равенства (7), то по формуле (23) получается выражение

$$\tilde{\phi}(t) = (K_2 \psi^*)(t) = K_2 \left[\frac{1}{u(t)} \frac{f_1(t)}{a_1^2(t) - b_1^2(t)} \right], \quad t \in L$$
 (27)

не зависящего от произвольной функции u(t) частного решения исходного полного СИУ-2К вида (1). Заключительный этап алгоритма этого метода известен: после решения той же "проблемы распознавания", состоящего в проверке частного решения (27) и приведении его к виду (19), остается общее решение исходного уравнения (1) выписать снова в виде (20).

В этом — суть метода непосредственного обращения справа полных СИУ-2К указанного класса. Он применим только к тем уравнениям вида (1) с индексом $\omega_1 \geq 0$, коэффициенты которых имеют однозначные аналитические продолжения $a_{+,1}(z)$ и $b_{+,1}(z)$, принадлежащие допустимому классу $C^{(\infty)}(D_L^+) \cap H^{(\lambda)}(D_L^+ \cup L)$ и удовлетворяющие условию

$$a_{+,1}(z) + b_{+,1}(z) \neq 0$$
 при всех $z \in (D_L^+ \cup L)$. (28)

Этот метод также "внутренне защищен от ошибок": если его применять к уравнениям, для которых условие (28) не выполняется, то получаемая в результате вспомогательная функция $k_2^*(t,\tau)$ оказывается не принадлежащей допустимому для нее функциональному классу (14), так как условие (15) в таких случаях не выполняется.

Пример 2. Решить в замкнутой форме уравнение

$$(K_1 \phi)(t) = (t + \alpha)\phi(t) + \frac{1}{\pi i} \oint_I \left(\frac{\beta - t}{\tau - t} + \frac{1}{2t} e^{t\tau} \right) \phi(\tau) d\tau = f_+(t), \quad t \in L, \quad (29)$$

где L— та же единичная окружность, что и в примере 1, α и β — постоянные, причем $\beta \neq -\alpha$, $\beta \neq 1+\alpha$, $\beta \neq 2+\alpha$ и $f_+(t)$ — значение на контуре L произвольной функции класса $C^{(\infty)}(z:|z|<1)\cap H^{(\lambda)}(z:|z|\leqslant 1)$.

Решение. Так как $a_{+,1}(z) - b_{+,1}(z) = (z + \alpha) - (\beta - z) = 2z + \alpha - \beta = 0$ при $z = (\beta - \alpha)/2$, то при $|\beta - \alpha| < 2$ условие (2) нарушено; так как $a_{+,1}(z) + b_{+,1}(z) = (\alpha + \beta)/2 \neq 0$ при всех $z \in (D^+_L) = \{z : |z| < 1\}$, то $\omega_1 = 1$ при $|\beta - \alpha| < 2$ и $\omega_1 = 0$ при $|\beta - \alpha| > 2$. Следовательно, для решения в замкнутой форме уравнения (29) целесообразно применить метод непосредственного обращения справа полных СИУ-2К.

Полагая в уравнении (29)
$$\phi(t) = (K_2 \psi)(t), \quad t \in L$$
 (30)

и определяя СИ-оператор K_2 формулой

$$(K_2 \psi)(t) = a_2(t) \psi(t) + \oint_L \left[\frac{1}{\pi i} \frac{b_2(t)}{\tau - t} + \frac{1}{t} k_2^*(t, \tau) \right] \psi(\tau) d\tau, \quad t \in L,$$
 (31)

мы приходим к уравнению (24) с коэффициентами

$$a_{1,2}(t) = (t + \alpha)a_2(t) + b_2(t)(\beta - t), \quad b_{1,2}(t) = (\beta - t)a_2(t) + b_2(t)(t + \alpha)$$

и с регулярной частью ядра

$$k_{1,2}(t,\tau) = \frac{t+\alpha}{t} k_2^*(t,\tau) + \frac{1}{2\pi i} \frac{a_2(\tau)}{t} e^{t\tau} + \frac{\beta - t}{\pi i} \frac{a_2(\tau) - a_2(t)}{\tau - t} + \frac{1}{\pi i} \oint_L \left(\frac{\beta - t}{s - t} + \frac{1}{2t} e^{ts} \right) \left[\frac{-1}{\pi i} \frac{b_2(s)}{s - \tau} + \frac{1}{s} k_2^*(s,\tau) \right] ds.$$

Учитывая следующие результаты вычисления интегралов:

5)
$$\frac{t-\beta}{\pi i} \oint_{L} \frac{1}{\pi i} \frac{b_{2}(s)}{s-\tau} \frac{ds}{s-t} = \frac{t-\beta}{\pi i} \frac{b_{2}(\tau) - b_{2}(t)}{\tau - t};$$
6)
$$\frac{\beta - t}{\pi i} \oint_{L} \frac{1}{s} k_{2}^{*}(s,\tau) \frac{ds}{s-t} = \frac{\beta - t}{t} \left[k_{2}^{*}(t,\tau) - 2k_{+,2}^{*}(0,\tau) \right];$$
7)
$$\frac{-1}{2\pi i} \oint_{L} \frac{1}{\pi i} \frac{b_{2}(s)}{t} e^{ts} \frac{ds}{s-\tau} = \frac{-1}{2\pi i} \frac{b_{2}(\tau)}{t} e^{t\tau};$$
8)
$$\frac{1}{2\pi i} \oint_{L} \frac{k_{2}^{*}(s,\tau)}{t} e^{st} \frac{ds}{s} = \frac{1}{t} \operatorname{res}_{z=0} \left[e^{zt} \frac{1}{z} k_{+,2}^{*}(z,\tau) \right] = \frac{1}{t} k_{+,2}^{*}(0,\tau)$$

и требуя выполнения тождеств (25) и (26), мы приходим к значениям коэффициентов $a_2(t) = u(t)(t+\alpha), \quad b_2(t) = u(t)(t-\beta)$ при всех $t \in L$ и к соотношению

$$\frac{\alpha + \beta}{t} \left[k_2^*(t, \tau) + \frac{u(\tau)}{2\pi i} e^{t\tau} + t \frac{\beta - t}{\pi i} \frac{u(\tau) - u(t)}{\tau - t} \right] + \frac{1 - 2(\beta - t)}{t} k_{+,2}^*(0, \tau) = 0, \quad t \in L, \quad \tau \in L, \quad t \neq \tau, \tag{32}$$

которое связывает значение вспомогательной искомой функции $k_{+,2}^*(t,\tau)$ со значением еще одной вспомогательной неизвестной $k_{+,2}^*(0,\tau)$. Так как для однозначного вычисления значений двух неизвестных

одного связывающего их соотношения (32) явно недостаточно, а неизвестная $k_{+,2}^*(0,\tau)$ является значением в точке $z=0\in D^+_L$ функции $k_{+,2}^*(z,\tau)$, то это и наводит на мысль использовать однозначные аналитические продолжения по переменной t с контура $L=\{t:|t|=1\}$ в замкнутый круг $(D^+_L\cup L)=\{z:|z|\leqslant 1\}$ обеих частей равенства (32), умноженных предварительно на t. Выполнив это однозначное аналитическое продолжение, выписываем "продолженное правое сингулярное тождество":

$$k_{+,2}^*(z,\tau) + \frac{u(\tau)}{2\pi i}e^{z\tau} + z\frac{\beta - z}{\pi i}\frac{u(\tau) - u(z)}{\tau - z} + \frac{1 - 2(\beta - z)}{\alpha + \beta}k_{+,2}^*(0,\tau) = 0,$$

$$z \in (D^+_L \cup L) = \{z : |z| \le 1\}, \quad \tau \in L = \{t : |t| = 1\}, \quad t \ne \tau.$$

Переходя здесь к пределу при $z \to 0$, получаем единственное (так как $\beta \neq 1 + \alpha$) значение второй вспомогательной неизвестной:

$$k_{+,2}^*(0,\tau) = -\frac{\alpha + \beta}{1 + \alpha - \beta} \frac{u(\tau)}{2\pi i}, \quad \tau \in L$$
 (33)

Подставляя значение (33) второй вспомогательной неизвестной $k_{+,2}^*(0,\tau)$ в левую часть тождества (32), получаем единственное (так как $\beta \neq -\alpha$) значение вспомогательной функции

$$k_2^*(t,\tau) = t \frac{u(t)}{\pi i} \frac{\beta - t}{\tau - t} - \frac{u(\tau)}{2\pi i} \left[e^{\tau t} + 2t \frac{\beta - t}{\tau - t} + \frac{1 - 2(\beta - t)}{1 + \alpha - \beta} \right], \quad t \in L, \ \tau \in L, \ t \neq \tau,$$

принадлежащее допустимому функциональному классу (14)–(16) и удовлетворяющее тождеству (26). Таким образом, СИ-оператор K_2 вида (31) в этом примере определяется формулой

$$(K_2\psi)(t) = u(t)(t+\alpha)\psi(t) -$$

$$-\oint_{L} \frac{u(\tau)}{\pi i} \left\{ \frac{1}{2t} \left[e^{t\tau} + \frac{1-2(\beta-t)}{1+\alpha-\beta} \right] + \frac{\beta-t}{\tau-t} \right\} \psi(\tau) d\tau, \quad t \in L,$$
 (34)

а уравнение (24) принимает вид:

$$u(t)(\alpha + \beta)(2t + \alpha - \beta) \psi(t) = f_+(t), \quad t \in L.$$

Если единственное решение $\psi(t)$ этого уравнения подставить в обе части равенства (31), то по формулам (30) и (34) получаем значение

$$\overline{\phi}(t) = \frac{t + \alpha}{\alpha + \beta} \frac{f_{+}(t)}{2t + \alpha - \beta} - \frac{(\alpha + \beta)^{-1}}{\pi i} \oint_{I} \left\{ \frac{\beta - t}{\tau - t} + \frac{1}{2t} \left[e^{t\tau} + \frac{1 - 2(\beta - t)}{1 + \alpha - \beta} \right] \right\} \frac{f_{+}(\tau)}{2\tau + \alpha - \beta} d\tau,$$

не зависящее от произвольной функции u(t). Вычисление входящих сюда интегралов приводит к следующему результату:

1) если $|\beta - \alpha| < 2$, $\beta \neq 1 + \alpha$ и $\beta \neq -\alpha$, то

$$\overline{\phi}(t) = \frac{f_{+}(t)}{\alpha + \beta} + \frac{1}{\alpha + \beta} f_{+} \left(\frac{\beta - \alpha}{2} \right) \left\{ 2 \frac{\beta - t}{2t + \alpha - \beta} + \frac{1}{2t} \left[\frac{1 - 2(\beta - t)}{1 + \alpha - \beta} - e^{t(\beta - \alpha)/2} \right] \right\}, \quad t \in L;$$

2) если $|\beta - \alpha| > 2$, $\beta \neq 1 + \alpha$ и $\beta \neq -\alpha$, то

$$\overline{\phi}(t) = \phi_*(t) = \frac{f_+(t)}{\alpha + \beta}, \quad t \in L.$$
 (35)

"Проблема распознавания" в данном примере решается просто:

- 1) так как при $\beta \neq -\alpha$ имеем $(K_1\overline{\varphi})(t) = f_+(t)$ при всех $t \in L$, то $\overline{\varphi}(t)$ вида (35) и есть частное решение исходного неоднородного уравнения (29) при $|\beta \alpha| > 2$, $\beta \neq 1 + \alpha$ и $\beta \neq -\alpha$;
- 2) так как при $|\beta-\alpha|<2$, $\beta\neq 1+\alpha$ и $\beta\neq -\alpha$ имеем $(K_1\varphi_{0,1})(t)=0$ при всех $t\in L$, то

$$\phi_{0,1}(t) = 2\frac{\beta - t}{2t + \alpha - \beta} + \frac{1}{2t} \left[\frac{1 - 2(\beta - t)}{1 + \alpha - \beta} - e^{t(\beta - \alpha)/2} \right], \quad t \in L$$
 (36)

является единственной отличной от тождественного нуля собственной функцией СИ-оператора K_1 вида (29) при указанных ограничениях на параметры α и β . Отсюда и заключаем, что если $|\beta - \alpha| \neq 2$, $\beta \neq 1 + \alpha$ и $\beta \neq -\alpha$, то исходное полное СИУ-2К вида (29) разрешимо и его общее решение дается формулой

где $\overline{\varphi}(t)$ и $\varphi_{0,1}(t)$ — функции вида (35) и (36) соответственно, а c_1 — произвольная постоянная. На этом решение примера 2 закончено.

Если же коэффициенты уравнения (1) таковы, что нарушены оба требования (2) и (28), так что описанные выше методы непосредственного обращения слева или справа полных СИУ-2К рассматриваемого типа к уравнению (1) неприменимы, то приходится выполнять одно техническое действие, так называемое "предварительное опосредование" уравнения (1). Это техническое действие заключается в переходе от такого исходного уравнения (1) к эквивалентному новому полному СИУ-2К того же указанного типа, к которому применим хотя бы один из методов непосредственного обращения слева или справа полных СИУ-2К рассматриваемого класса.

Суть этого технического действия состоит в следующем. Пусть коэффициенты исходного уравнения (1) удовлетворяют соотношениям

$$a_{1}(t) - b_{1}(t) = \rho_{1}(t) \prod_{j=1}^{p} (t - z_{j}^{-})^{\mu_{j}} = \rho_{1}(t) \prod_{j=1}^{m} (t - z_{j}^{-}),$$

$$a_{1}(t) + b_{1}(t) = \sigma_{1}(t) \prod_{j=1}^{q} (t - z_{j}^{+})^{\nu_{j}} = \sigma_{1}(t) \prod_{j=1}^{n} (t - z_{j}^{+}),$$
(38)

где p и q, μ_j и ν_j , $m=\mu_1+\mu_2+\cdots+\mu_p$ и $n=\nu_1+\nu_2+\cdots+\nu_q$ натуральные числа, $z^-{}_j$ (при $1\leqslant j\leqslant p$) и $z^+{}_j$ (при $1\leqslant j\leqslant q$) — известные точки области $D^+{}_L$, а $\rho_1(t)$ и $\sigma_1(t)$ — значения на контуре L функций $\rho_{+,1}(z)$ и $\sigma_{+,1}(z)$ допустимого класса $C^{(\infty)}(D^+{}_L)\cap H^{(\lambda)}(D^+{}_L\cup L)$, не обращающихся в нуль при всех $z\in (D^+{}_L\cup L)$.

Пусть для определенности $m \leqslant n$; тогда

$$a_1(t) + b_1(t) = \sigma_1(t) \prod_{j=1}^{m} (t - z_j^+) \prod_{j=m+1}^{n} (t - z_j^+);$$
 (39)

очевидно, при m=n последнее произведение равно единице. Применяя в этом случае к обеим частям исходного уравнения (1) характеристический и с нулевым индексом СИ-оператор M_3^0 , определяемый формулой

$$(M_3^0 \phi)(t) = a_3(t)\phi(t) + \frac{b_3(t)}{\pi i} \oint_I \frac{\phi(\tau)}{\tau - t} d\tau, \quad t \in L, \tag{40}$$

в которой коэффициенты выбраны из соотношений

$$a_3(t) - b_3(t) = \rho_3(t) \prod_{j=1}^m (t - z_j^+)$$
 $u = a_3(t) + b_3(t) = \sigma_3(t) \prod_{j=1}^m (t - z_j^-)$,

где $\rho_3(t)$ и $\sigma_3(t)$ — значения на контуре L произвольных функций $\rho_{+,3}(z)$ и $\sigma_{+,3}(z)$ допустимого класса $C^{(\infty)}(D^+_L) \cap H^{(\lambda)}(D^+_L \cup L)$, не обращающихся в нуль при всех $z \in (D^+_L \cup L)$, мы приходим к новому полному СИУ-2К того же указанного класса

$$(M_3^0 K_1 \phi)(t) = a_{3,1}(t)\phi(t) + \oint_L \left[\frac{1}{\pi i} \frac{b_{3,1}(t)}{\tau - t} + k_{3,1}(t,\tau) \right] \phi(\tau) d\tau = (M_3^0 f_1)(t), \quad t \in L$$
(41)

с коэффициентами

$$a_{3,1}(t,\tau) = \prod_{j=1}^{m} (t - z_{j}^{-}) \prod_{j=1}^{m} (t - z_{j}^{+}) \frac{1}{2} \left\{ \rho_{3}(t)\rho_{1}(t) + \sigma_{3}(t)\sigma_{1}(t) \prod_{j=m+1}^{n} (t - z_{j}^{+}) \right\},$$

$$b_{3,1}(t,\tau) = \prod_{j=1}^{m} (t - z^{-}_{j}) \prod_{j=1}^{m} (t - z^{+}_{j}) \frac{1}{2} \left\{ -\rho_{3}(t)\rho_{1}(t) + \sigma_{3}(t)\sigma_{1}(t) \prod_{j=m+1}^{n} (t - z^{+}_{j}) \right\}$$

и с регулярной частью ядра

$$k_{3,1}(t,\tau) = \sigma_3(t)k_1(t,\tau) \prod_{j=1}^m (t-z_j^-) + \frac{1}{2\pi i} \left[\sigma_3(t) \prod_{j=1}^m (t-z_j^-) - \rho_3(t) \times \prod_{j=1}^m (t-z_j^+) \right] \frac{1}{\tau-t} \left[\rho_1(\tau) \prod_{j=1}^m (\tau-z_j^-) - \rho_1(t) \prod_{j=1}^m (t-z_j^-) \right].$$

Поэтому, разделив обе части уравнения (41) на произведение

$$\prod_{j=1}^{m} (t - z^{-}_{j}) \prod_{j=1}^{m} (t - z^{+}_{j}),$$

мы и приходим к тому полному СИУ-2К указанного класса

$$(K_4 \phi)(t) \equiv a_4(t)\phi(t) + \oint_L \left[\frac{1}{\pi i} \frac{b_4(t)}{\tau - t} + k_4(t, \tau) \right] \phi(\tau) d\tau = f_4(t), \quad t \in L, \quad (42)$$

коэффициенты которого

$$a_4(t) = \frac{1}{2} \left\{ \rho_3(t) \rho_1(t) + \sigma_3(t) \sigma_1(t) \prod_{j=m+1}^n (t - z_j^+) \right\},\,$$

$$b_4(t) = \frac{1}{2} \left\{ -\rho_3(t)\rho_1(t) + \sigma_3(t)\sigma_1(t) \prod_{j=m+1}^n (t - z_j^+) \right\}$$

удовлетворяют при m < n условию (2), а при m = n—условиям (2) и (28). Следовательно, уравнение (42) можно решить в замкнутой форме методом непосредственного обращения слева (если m < n) или справа (если m = n) полных СИУ-2К указанного класса.

Если же в представлении (38) имеем m > n, так что

$$a_1(t) - b_1(t) = \rho_1(t) \prod_{j=1}^{n} (t - z_j^-) \prod_{j=n+1}^{m} (t - z_j^-), \quad t \in L,$$
 (43)

то к обеим частям (1) применяем характеристический и с нулевым индексом СИ-оператор M_5^0 , определяемый формулой

$$(M_5^0 \phi)(t) = a_5(t)\phi(t) + \frac{b_5(t)}{\pi i} \oint_{L} \frac{\phi(\tau)}{\tau - t} d\tau, \quad t \in L, \tag{44}$$

в которой коэффициенты выбраны из соотношений

$$a_5(t) - b_5(t) = \rho_5(t) \prod_{i=1}^n (t - z_j^+)$$
 и $a_5(t) + b_5(t) = \sigma_5(t) \prod_{i=1}^n (t - z_j^-),$

где $\rho_5(t)$ и $\sigma_5(t)$ — значения на контуре L произвольных функций $\rho_{+,5}(z)$ и $\sigma_{+,5}(z)$ допустимого класса $C^{(\infty)}(D^+_L)\cap H^{(\lambda)}(D^+_L\cup L)$, не обращающихся в нуль при всех $z\in (D^+_L\cup L)$. В результате мы и приходим (указанным выше способом) к тому новому полному СИУ-2К рассматриваемого класса

$$(K_6\varphi)(t) \equiv a_6(t)\varphi(t) + \oint_I \left[\frac{1}{\pi i} \frac{b_6(t)}{\tau - t} + k_6(t, \tau) \right] \varphi(\tau) d\tau = f_6(t), \quad t \in L, \quad (45)$$

коэффициенты которого

$$a_6(t) = \frac{1}{2} \left\{ \sigma_5(t)\sigma_1(t) + \rho_5(t)\rho_1(t) \prod_{j=n+1}^m (t - z_j^-) \right\},\,$$

$$b_6(t) = \frac{1}{2} \left\{ \sigma_5(t)\sigma_1(t) - \rho_5(t)\rho_1(t) \prod_{j=n+1}^m (t - z_j^-) \right\}$$

удовлетворяют условию (28). Следовательно, уравнение (45) можно решить в замкнутой форме методом непосредственного обращения справа полных СИУ-2К указанного класса.

В заключение отметим следующее:

- 1) поскольку в представлениях (39) и (43) левое и правое произведения можно образовывать произвольно, меняя взаимно местами их скобки с различными биномами, то таких операторов M_3^0 вида (40) и M_5^0 вида (44) существует достаточно много;
- 2) эквивалентность уравнений (1) и (42) или, что то же самое, уравнений (1) и (41) следует из того, что характеристический и с нулевым индексом СИ-оператор M_3^0 вида (40) не имеет [1, с. 180] собственных функций, отличных от тождественного нуля;
- 3) эквивалентность уравнений (1) и (45) устанавливается аналогично;
- 4) результат решения в замкнутой форме исходного уравнения (1) методами его опосредованного обращения слева или справа не зависит от того, с помощью какого именно СИ-оператора M_3^0 (при $\omega_1 \leq 0$) или СИ-оператора M_5^0 (при $\omega_1 > 0$) осуществлено "предварительное опосредование" исходного уравнения (1).

В качестве *примера 3* приведем результат предварительного опосредования уравнения

$$(K\phi)(t) = (4t^3 - 5t^2 + \frac{t}{2} - 2)\phi(t) + \oint_L \left[\frac{1}{\pi i} \frac{-4t^3 + 7t^2 - \frac{t}{2} - 1}{\tau - t} + \cos(4t\tau^2 - 1) \right] \phi(\tau)d(\tau) = At^2 + Bt + C, \quad t \in L,$$
(46)

где L-та же единичная окружность, что и в примерах 1 и 2, и A,B,C- постоянные, с помощью характеристического СИ-оператора, определяемого формулой

$$(M^{0}\psi)(t) = 2t\psi(t) - \frac{1}{\pi i} \oint_{I} \frac{\psi(\tau)}{\tau - t} d(\tau), \quad t \in L.$$

Получающееся в результате уравнение

$$(M^{0}K\phi)(t) = (2t^{2} - \frac{3}{2}t - 1)\phi(t) + \oint_{L} \left[\frac{-2t^{2} + \frac{5}{2}t - 1}{\pi i(\tau - t)} + \frac{\cos(4t\tau^{2} - 1)}{2t + 1} - \frac{8(\tau^{2} + t\tau + t^{2}) - 12(t + \tau) + 6}{\pi i(4t^{2} - 1)} \right] \phi(\tau)d\tau = \frac{At^{2} + Bt + C}{2t + 1}, \quad t \in L$$

имеет тот же индекс $\omega = 2$, что и уравнение (46), но уже решается в замкнутой форме методом непосредственного обращения справа полных СИУ-2К указанного класса. Именно так и получено общее решение рассматриваемого здесь уравнения (46):

$$\phi(t) = \phi_*(t) + c_1 \phi_{0,1}(t) + c_2 \phi_{0,2}(t), \quad t \in L, \tag{47}$$

где

$$\phi_*(t) = \frac{1}{2t^2 - 5t - 3} \left[At^2 + Bt + C - \frac{A - 2B + 4C}{4 + \pi i \cos(3/2)} G(t) \right]$$
(48)

есть частное решение неоднородного уравнения (46), c_1 и c_2 —произвольные постоянные, а

$$\phi_{0,1}(t) = \frac{1}{2t^2 - 5t - 3} \left[\frac{P_3(t)}{(2t - 1)^2} - \pi i t \sin(t - 1) + \frac{2 + \pi i \sin(3/2)}{4 + \pi i \cos(3/2)} G(t) \right]$$

$$\phi_{0,2}(t) = \frac{1}{2t^2 - 5t - 3} \left\{ \frac{P_3(t)}{(2t - 1)^2} - \pi i t \left[\frac{1}{2} \sin(t - 1) + \frac{-2 + \pi i (\sin(3/2) + \cos(3/2))}{4 + \pi i \cos(3/2)} G(t) \right] \right\}$$
(50)

— линейно независимые на контуре L собственные функции исходного СИ-оператора K вида (46) с индексом $\omega=2$, причем

$$P_3(t) = 4t^3 - 7t^2 + \frac{11}{2}t + 1$$
 $H = G(t) = \frac{\pi i}{4}\cos(t-1) + \frac{P_3(t)}{4t-2}$

В отличие от уравнения (21), легко решаемого и другими методами (в [3] изложено пять способов решения этого полного СИУ-2К с вырожденной регулярной частью ядра, приводящих к результату (22) данной работы), уравнения (29) и (46) являются примерами полных

СИУ-2К, не решаемых в замкнутой форме (то есть точно и в результате вычисления *конечного* числа интегралов от известных и заданных функций) никакими "старыми", "классическими" методами, так как:

- 1) регулярные части ядер этих уравнений не являются вырожденными функциями;
- 2) ядра этих уравнений не являются автоморфными функциями и не обладают никакими групповыми свойствами.

Полученные здесь результаты (35)–(37) и (47)–(50) свидетельствуют о том, что изложенные в данной работе методы являются эффективным средством исследования и решения полных СИУ-2К указанного класса.

Литература

- [1] Гахов Ф.Д. Краевые задачи. М.: Наука, 1977. 640 с.
- [2] Мусхелишвили Н.И. Сингулярные интегральные уравнения. М.: Наука, 1962. 600 с.
- [3] Бабурин Ю.С. Методы сингуляризации полных сингулярных интегральных уравнений второго рода с ядром Коши. Куйбышев: Издво КГУ, 1987. Деп. в ВИНИТИ 25.02.87. №1333-В87. 44 с.
- [4] Бабурин Ю.С. Методы решения в замкнутой форме полных сингулярных интегральных уравнений второго рода с ядром Гильберта, с промежутком интегрирования [0, 2π] и с аналитически продолжаемыми заданными функциями. Куйбышев: Изд-во КГУ, 1989. Деп. в ВИНИТИ 12.07.89. №4638-В89. 195 с.
- [5] Свешников А.Г., Тихонов А.Н. Теория функций комплексной переменной. М.: Наука, 1970. 304 с.

INVERSION METHODS FOR SINGULAR INTEGRAL EQUATIONS³

© 2003 Y.S. Baburin⁴

In the paper inversion methods for complete singular integral equation of the second kind with Caushy's kernel and closed contour of integration are given.

Поступила в редакцию 23/IV/2003; в окончательном варианте — 8/V/2003.

³ Communicated by Dr. Sci. (Phys. & Math.) Prof. Y.N. Radaev.

⁴ Baburin Yuriy Stepanovich, Dept. of High Mathematics and Informatics, Samara State University, Samara, 443011, Russia.